MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-natded9.26 Structured version   Visualization version   GIF version

Theorem ex-natded9.26 28684
Description: Theorem 9.26 of [Clemente] p. 45, translated line by line using an interpretation of natural deduction in Metamath. This proof has some additional complications due to the fact that Metamath's existential elimination rule does not change bound variables, so we need to verify that 𝑥 is bound in the conclusion. For information about ND and Metamath, see the page on Deduction Form and Natural Deduction in Metamath Proof Explorer. The original proof, which uses Fitch style, was written as follows (the leading "..." shows an embedded ND hypothesis, beginning with the initial assumption of the ND hypothesis):
#MPE#ND Expression MPE TranslationND Rationale MPE Rationale
13 𝑥𝑦𝜓(𝑥, 𝑦) (𝜑 → ∃𝑥𝑦𝜓) Given $e.
26 ...| 𝑦𝜓(𝑥, 𝑦) ((𝜑 ∧ ∀𝑦𝜓) → ∀𝑦𝜓) ND hypothesis assumption simpr 484. Later statements will have this scope.
37;5,4 ... 𝜓(𝑥, 𝑦) ((𝜑 ∧ ∀𝑦𝜓) → 𝜓) E 2,y spsbcd 3725 (E), 5,6. To use it we need a1i 11 and vex 3426. This could be immediately done with 19.21bi 2184, but we want to show the general approach for substitution.
412;8,9,10,11 ... 𝑥𝜓(𝑥, 𝑦) ((𝜑 ∧ ∀𝑦𝜓) → ∃𝑥𝜓) I 3,a spesbcd 3812 (I), 11. To use it we need sylibr 233, which in turn requires sylib 217 and two uses of sbcid 3728. This could be more immediately done using 19.8a 2176, but we want to show the general approach for substitution.
513;1,2 𝑥𝜓(𝑥, 𝑦) (𝜑 → ∃𝑥𝜓) E 1,2,4,a exlimdd 2216 (E), 1,2,3,12. We'll need supporting assertions that the variable is free (not bound), as provided in nfv 1918 and nfe1 2149 (MPE# 1,2)
614 𝑦𝑥𝜓(𝑥, 𝑦) (𝜑 → ∀𝑦𝑥𝜓) I 5 alrimiv 1931 (I), 13

The original used Latin letters for predicates; we have replaced them with Greek letters to follow Metamath naming conventions and so that it is easier to follow the Metamath translation. The Metamath line-for-line translation of this natural deduction approach precedes every line with an antecedent including 𝜑 and uses the Metamath equivalents of the natural deduction rules. Below is the final Metamath proof (which reorders some steps).

Note that in the original proof, 𝜓(𝑥, 𝑦) has explicit parameters. In Metamath, these parameters are always implicit, and the parameters upon which a wff variable can depend are recorded in the "allowed substitution hints" below.

A much more efficient proof, using more of Metamath and MPE's capabilities, is shown in ex-natded9.26-2 28685.

(Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by David A. Wheeler, 18-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
ex-natded9.26.1 (𝜑 → ∃𝑥𝑦𝜓)
Assertion
Ref Expression
ex-natded9.26 (𝜑 → ∀𝑦𝑥𝜓)
Distinct variable group:   𝑥,𝑦,𝜑
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem ex-natded9.26
StepHypRef Expression
1 nfv 1918 . . 3 𝑥𝜑
2 nfe1 2149 . . 3 𝑥𝑥𝜓
3 ex-natded9.26.1 . . 3 (𝜑 → ∃𝑥𝑦𝜓)
4 vex 3426 . . . . . . . 8 𝑦 ∈ V
54a1i 11 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝜓) → 𝑦 ∈ V)
6 simpr 484 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝜓) → ∀𝑦𝜓)
75, 6spsbcd 3725 . . . . . 6 ((𝜑 ∧ ∀𝑦𝜓) → [𝑦 / 𝑦]𝜓)
8 sbcid 3728 . . . . . 6 ([𝑦 / 𝑦]𝜓𝜓)
97, 8sylib 217 . . . . 5 ((𝜑 ∧ ∀𝑦𝜓) → 𝜓)
10 sbcid 3728 . . . . 5 ([𝑥 / 𝑥]𝜓𝜓)
119, 10sylibr 233 . . . 4 ((𝜑 ∧ ∀𝑦𝜓) → [𝑥 / 𝑥]𝜓)
1211spesbcd 3812 . . 3 ((𝜑 ∧ ∀𝑦𝜓) → ∃𝑥𝜓)
131, 2, 3, 12exlimdd 2216 . 2 (𝜑 → ∃𝑥𝜓)
1413alrimiv 1931 1 (𝜑 → ∀𝑦𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1783  wcel 2108  Vcvv 3422  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-sbc 3712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator