MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-natded9.26 Structured version   Visualization version   GIF version

Theorem ex-natded9.26 30438
Description: Theorem 9.26 of [Clemente] p. 45, translated line by line using an interpretation of natural deduction in Metamath. This proof has some additional complications due to the fact that Metamath's existential elimination rule does not change bound variables, so we need to verify that 𝑥 is bound in the conclusion. For information about ND and Metamath, see the page on Deduction Form and Natural Deduction in Metamath Proof Explorer. The original proof, which uses Fitch style, was written as follows (the leading "..." shows an embedded ND hypothesis, beginning with the initial assumption of the ND hypothesis):
#MPE#ND Expression MPE TranslationND Rationale MPE Rationale
13 𝑥𝑦𝜓(𝑥, 𝑦) (𝜑 → ∃𝑥𝑦𝜓) Given $e.
26 ...| 𝑦𝜓(𝑥, 𝑦) ((𝜑 ∧ ∀𝑦𝜓) → ∀𝑦𝜓) ND hypothesis assumption simpr 484. Later statements will have this scope.
37;5,4 ... 𝜓(𝑥, 𝑦) ((𝜑 ∧ ∀𝑦𝜓) → 𝜓) E 2,y spsbcd 3802 (E), 5,6. To use it we need a1i 11 and vex 3484. This could be immediately done with 19.21bi 2189, but we want to show the general approach for substitution.
412;8,9,10,11 ... 𝑥𝜓(𝑥, 𝑦) ((𝜑 ∧ ∀𝑦𝜓) → ∃𝑥𝜓) I 3,a spesbcd 3883 (I), 11. To use it we need sylibr 234, which in turn requires sylib 218 and two uses of sbcid 3805. This could be more immediately done using 19.8a 2181, but we want to show the general approach for substitution.
513;1,2 𝑥𝜓(𝑥, 𝑦) (𝜑 → ∃𝑥𝜓) E 1,2,4,a exlimdd 2220 (E), 1,2,3,12. We'll need supporting assertions that the variable is free (not bound), as provided in nfv 1914 and nfe1 2150 (MPE# 1,2)
614 𝑦𝑥𝜓(𝑥, 𝑦) (𝜑 → ∀𝑦𝑥𝜓) I 5 alrimiv 1927 (I), 13

The original used Latin letters for predicates; we have replaced them with Greek letters to follow Metamath naming conventions and so that it is easier to follow the Metamath translation. The Metamath line-for-line translation of this natural deduction approach precedes every line with an antecedent including 𝜑 and uses the Metamath equivalents of the natural deduction rules. Below is the final Metamath proof (which reorders some steps).

Note that in the original proof, 𝜓(𝑥, 𝑦) has explicit parameters. In Metamath, these parameters are always implicit, and the parameters upon which a wff variable can depend are recorded in the "allowed substitution hints" below.

A much more efficient proof, using more of Metamath and MPE's capabilities, is shown in ex-natded9.26-2 30439.

(Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by David A. Wheeler, 18-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
ex-natded9.26.1 (𝜑 → ∃𝑥𝑦𝜓)
Assertion
Ref Expression
ex-natded9.26 (𝜑 → ∀𝑦𝑥𝜓)
Distinct variable group:   𝑥,𝑦,𝜑
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem ex-natded9.26
StepHypRef Expression
1 nfv 1914 . . 3 𝑥𝜑
2 nfe1 2150 . . 3 𝑥𝑥𝜓
3 ex-natded9.26.1 . . 3 (𝜑 → ∃𝑥𝑦𝜓)
4 vex 3484 . . . . . . . 8 𝑦 ∈ V
54a1i 11 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝜓) → 𝑦 ∈ V)
6 simpr 484 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝜓) → ∀𝑦𝜓)
75, 6spsbcd 3802 . . . . . 6 ((𝜑 ∧ ∀𝑦𝜓) → [𝑦 / 𝑦]𝜓)
8 sbcid 3805 . . . . . 6 ([𝑦 / 𝑦]𝜓𝜓)
97, 8sylib 218 . . . . 5 ((𝜑 ∧ ∀𝑦𝜓) → 𝜓)
10 sbcid 3805 . . . . 5 ([𝑥 / 𝑥]𝜓𝜓)
119, 10sylibr 234 . . . 4 ((𝜑 ∧ ∀𝑦𝜓) → [𝑥 / 𝑥]𝜓)
1211spesbcd 3883 . . 3 ((𝜑 ∧ ∀𝑦𝜓) → ∃𝑥𝜓)
131, 2, 3, 12exlimdd 2220 . 2 (𝜑 → ∃𝑥𝜓)
1413alrimiv 1927 1 (𝜑 → ∀𝑦𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wex 1779  wcel 2108  Vcvv 3480  [wsbc 3788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-v 3482  df-sbc 3789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator