Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpld | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. A translation of natural deduction rule ∧ EL (∧ elimination left), see natded 28812. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
simpld.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simpld | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpld.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | simpl 484 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
Copyright terms: Public domain | W3C validator |