Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpjaodan | Structured version Visualization version GIF version |
Description: Eliminate a disjunction in a deduction. A translation of natural deduction rule ∨ E (∨ elimination), see natded 28668. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
jaodan.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
Ref | Expression |
---|---|
mpjaodan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaodan.3 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) | |
2 | jaodan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | jaodan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | 2, 3 | jaodan 954 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
5 | 1, 4 | mpdan 683 | 1 ⊢ (𝜑 → 𝜒) |
Copyright terms: Public domain | W3C validator |