Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exlimiieq1 Structured version   Visualization version   GIF version

Theorem exlimiieq1 36306
Description: Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 30-Sep-2018.)
Hypotheses
Ref Expression
exlimiieq1.1 𝑥𝜑
exlimiieq1.2 (𝑥 = 𝑦𝜑)
Assertion
Ref Expression
exlimiieq1 𝜑

Proof of Theorem exlimiieq1
StepHypRef Expression
1 exlimiieq1.1 . 2 𝑥𝜑
2 exlimiieq1.2 . 2 (𝑥 = 𝑦𝜑)
3 ax6e 2378 . 2 𝑥 𝑥 = 𝑦
41, 2, 3exlimii 36303 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-12 2167  ax-13 2367
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-nf 1779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator