| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exlimimd | Structured version Visualization version GIF version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020.) |
| Ref | Expression |
|---|---|
| exlimimd.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| exlimimd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimimd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimimd.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | exlimimd.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 2 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 4 | 1, 3 | exlimddv 1935 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |