Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exlimimd | Structured version Visualization version GIF version |
Description: Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020.) |
Ref | Expression |
---|---|
exlimimd.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
exlimimd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimimd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimimd.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | exlimimd.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 2 | imp 410 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
4 | 1, 3 | exlimddv 1943 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |