Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exlimim | Structured version Visualization version GIF version |
Description: Closed form of exlimimd 35673. (Contributed by ML, 17-Jul-2020.) |
Ref | Expression |
---|---|
exlimim | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2148 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝜓) | |
2 | nfv 1917 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | sp 2176 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
4 | 1, 2, 3 | exlimd 2211 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
5 | 4 | impcom 409 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1539 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1782 df-nf 1786 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |