| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exlimim | Structured version Visualization version GIF version | ||
| Description: Closed form of exlimimd 37285. (Contributed by ML, 17-Jul-2020.) |
| Ref | Expression |
|---|---|
| exlimim | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2150 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝜓) | |
| 2 | nfv 1913 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | sp 2182 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 4 | 1, 2, 3 | exlimd 2217 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓)) |
| 5 | 4 | impcom 407 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |