Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exlimim Structured version   Visualization version   GIF version

Theorem exlimim 35672
Description: Closed form of exlimimd 35673. (Contributed by ML, 17-Jul-2020.)
Assertion
Ref Expression
exlimim ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → 𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exlimim
StepHypRef Expression
1 nfa1 2148 . . 3 𝑥𝑥(𝜑𝜓)
2 nfv 1917 . . 3 𝑥𝜓
3 sp 2176 . . 3 (∀𝑥(𝜑𝜓) → (𝜑𝜓))
41, 2, 3exlimd 2211 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓))
54impcom 409 1 ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wal 1539  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ex 1782  df-nf 1786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator