Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimddv | Structured version Visualization version GIF version |
Description: Existential elimination rule of natural deduction (Rule C, explained in exlimiv 1931). (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
exlimddv.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
exlimddv.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
exlimddv | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | exlimddv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 2 | ex 416 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 3 | exlimdv 1934 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
Copyright terms: Public domain | W3C validator |