Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exor Structured version   Visualization version   GIF version

Theorem exor 42615
Description: Alias for 19.43 1881 for easier lookup. (Contributed by SN, 5-Jul-2025.) (New usage is discouraged.)
Assertion
Ref Expression
exor (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))

Proof of Theorem exor
StepHypRef Expression
1 19.43 1881 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 846  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator