Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexor Structured version   Visualization version   GIF version

Theorem rexor 42616
Description: Alias for r19.43 3128 for easier lookup. (Contributed by SN, 5-Jul-2025.) (New usage is discouraged.)
Assertion
Ref Expression
rexor (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))

Proof of Theorem rexor
StepHypRef Expression
1 r19.43 3128 1 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 846  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-ral 3068  df-rex 3077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator