MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.43 Structured version   Visualization version   GIF version

Theorem 19.43 1882
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.)
Assertion
Ref Expression
19.43 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))

Proof of Theorem 19.43
StepHypRef Expression
1 df-or 848 . . . 4 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
21exbii 1848 . . 3 (∃𝑥(𝜑𝜓) ↔ ∃𝑥𝜑𝜓))
3 19.35 1877 . . 3 (∃𝑥𝜑𝜓) ↔ (∀𝑥 ¬ 𝜑 → ∃𝑥𝜓))
4 alnex 1781 . . . 4 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
54imbi1i 349 . . 3 ((∀𝑥 ¬ 𝜑 → ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓))
62, 3, 53bitri 297 . 2 (∃𝑥(𝜑𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓))
7 df-or 848 . 2 ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓))
86, 7bitr4i 278 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780
This theorem is referenced by:  19.34  1992  19.44v  1998  19.45v  1999  19.44  2238  19.45  2239  eeor  2332  rexun  4155  uniprg  4883  uniun  4890  unopab  5182  zfpair  5371  dmun  5864  dmopab2rex  5871  coundi  6208  coundir  6209  kmlem16  10095  vdwapun  16921  satfdm  35329  satf0op  35337  dmopab3rexdif  35365  bj-nnfor  36711  bj-nnford  36712  exor  42628  pm10.42  44326
  Copyright terms: Public domain W3C validator