![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.43 | Structured version Visualization version GIF version |
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.) |
Ref | Expression |
---|---|
19.43 | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 845 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
2 | 1 | exbii 1842 | . . 3 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ ∃𝑥(¬ 𝜑 → 𝜓)) |
3 | 19.35 1872 | . . 3 ⊢ (∃𝑥(¬ 𝜑 → 𝜓) ↔ (∀𝑥 ¬ 𝜑 → ∃𝑥𝜓)) | |
4 | alnex 1775 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
5 | 4 | imbi1i 349 | . . 3 ⊢ ((∀𝑥 ¬ 𝜑 → ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) |
6 | 2, 3, 5 | 3bitri 297 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) |
7 | df-or 845 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) | |
8 | 6, 7 | bitr4i 278 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 ∀wal 1531 ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1774 |
This theorem is referenced by: 19.34 1982 19.44v 1988 19.45v 1989 19.44 2222 19.45 2223 eeor 2321 rexun 4182 uniprg 4915 uniprOLD 4917 uniun 4924 unopab 5220 zfpair 5409 dmun 5900 dmopab2rex 5907 coundi 6236 coundir 6237 kmlem16 10156 vdwapun 16906 satfdm 34849 satf0op 34857 dmopab3rexdif 34885 bj-nnfor 36118 bj-nnford 36119 pm10.42 43612 |
Copyright terms: Public domain | W3C validator |