MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.43 Structured version   Visualization version   GIF version

Theorem 19.43 1882
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.)
Assertion
Ref Expression
19.43 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))

Proof of Theorem 19.43
StepHypRef Expression
1 df-or 848 . . . 4 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
21exbii 1848 . . 3 (∃𝑥(𝜑𝜓) ↔ ∃𝑥𝜑𝜓))
3 19.35 1877 . . 3 (∃𝑥𝜑𝜓) ↔ (∀𝑥 ¬ 𝜑 → ∃𝑥𝜓))
4 alnex 1781 . . . 4 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
54imbi1i 349 . . 3 ((∀𝑥 ¬ 𝜑 → ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓))
62, 3, 53bitri 297 . 2 (∃𝑥(𝜑𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓))
7 df-or 848 . 2 ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓))
86, 7bitr4i 278 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780
This theorem is referenced by:  19.34  1992  19.44v  1998  19.45v  1999  19.44  2238  19.45  2239  eeor  2335  rexun  4176  uniprg  4904  uniun  4911  unopab  5205  zfpair  5396  dmun  5895  dmopab2rex  5902  coundi  6241  coundir  6242  kmlem16  10185  vdwapun  16999  satfdm  35396  satf0op  35404  dmopab3rexdif  35432  bj-nnfor  36773  bj-nnford  36774  exor  42657  pm10.42  44355
  Copyright terms: Public domain W3C validator