| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.43 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.) |
| Ref | Expression |
|---|---|
| 19.43 | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | exbii 1848 | . . 3 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ ∃𝑥(¬ 𝜑 → 𝜓)) |
| 3 | 19.35 1877 | . . 3 ⊢ (∃𝑥(¬ 𝜑 → 𝜓) ↔ (∀𝑥 ¬ 𝜑 → ∃𝑥𝜓)) | |
| 4 | alnex 1781 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 5 | 4 | imbi1i 349 | . . 3 ⊢ ((∀𝑥 ¬ 𝜑 → ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) |
| 6 | 2, 3, 5 | 3bitri 297 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) |
| 7 | df-or 848 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 8 | 6, 7 | bitr4i 278 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 |
| This theorem is referenced by: 19.34 1992 19.44v 1998 19.45v 1999 19.44 2238 19.45 2239 eeor 2335 rexun 4176 uniprg 4904 uniun 4911 unopab 5205 zfpair 5396 dmun 5895 dmopab2rex 5902 coundi 6241 coundir 6242 kmlem16 10185 vdwapun 16999 satfdm 35396 satf0op 35404 dmopab3rexdif 35432 bj-nnfor 36773 bj-nnford 36774 exor 42657 pm10.42 44355 |
| Copyright terms: Public domain | W3C validator |