MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.43 Structured version   Visualization version   GIF version

Theorem 19.43 1881
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.)
Assertion
Ref Expression
19.43 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))

Proof of Theorem 19.43
StepHypRef Expression
1 df-or 847 . . . 4 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
21exbii 1846 . . 3 (∃𝑥(𝜑𝜓) ↔ ∃𝑥𝜑𝜓))
3 19.35 1876 . . 3 (∃𝑥𝜑𝜓) ↔ (∀𝑥 ¬ 𝜑 → ∃𝑥𝜓))
4 alnex 1779 . . . 4 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
54imbi1i 349 . . 3 ((∀𝑥 ¬ 𝜑 → ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓))
62, 3, 53bitri 297 . 2 (∃𝑥(𝜑𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓))
7 df-or 847 . 2 ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓))
86, 7bitr4i 278 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 846  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778
This theorem is referenced by:  19.34  1986  19.44v  1992  19.45v  1993  19.44  2238  19.45  2239  eeor  2339  rexun  4219  uniprg  4947  uniun  4954  unopab  5248  zfpair  5439  dmun  5935  dmopab2rex  5942  coundi  6278  coundir  6279  kmlem16  10235  vdwapun  17021  satfdm  35337  satf0op  35345  dmopab3rexdif  35373  bj-nnfor  36716  bj-nnford  36717  exor  42622  pm10.42  44333
  Copyright terms: Public domain W3C validator