| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.43 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.) |
| Ref | Expression |
|---|---|
| 19.43 | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | exbii 1848 | . . 3 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ ∃𝑥(¬ 𝜑 → 𝜓)) |
| 3 | 19.35 1877 | . . 3 ⊢ (∃𝑥(¬ 𝜑 → 𝜓) ↔ (∀𝑥 ¬ 𝜑 → ∃𝑥𝜓)) | |
| 4 | alnex 1781 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 5 | 4 | imbi1i 349 | . . 3 ⊢ ((∀𝑥 ¬ 𝜑 → ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) |
| 6 | 2, 3, 5 | 3bitri 297 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) |
| 7 | df-or 848 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 8 | 6, 7 | bitr4i 278 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 |
| This theorem is referenced by: 19.34 1992 19.44v 1998 19.45v 1999 19.44 2238 19.45 2239 eeor 2332 rexun 4149 uniprg 4877 uniun 4884 unopab 5175 zfpair 5363 dmun 5857 dmopab2rex 5864 coundi 6200 coundir 6201 kmlem16 10079 vdwapun 16905 satfdm 35361 satf0op 35369 dmopab3rexdif 35397 bj-nnfor 36743 bj-nnford 36744 exor 42660 pm10.42 44357 |
| Copyright terms: Public domain | W3C validator |