![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.43 | Structured version Visualization version GIF version |
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.) |
Ref | Expression |
---|---|
19.43 | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 847 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
2 | 1 | exbii 1846 | . . 3 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ ∃𝑥(¬ 𝜑 → 𝜓)) |
3 | 19.35 1876 | . . 3 ⊢ (∃𝑥(¬ 𝜑 → 𝜓) ↔ (∀𝑥 ¬ 𝜑 → ∃𝑥𝜓)) | |
4 | alnex 1779 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
5 | 4 | imbi1i 349 | . . 3 ⊢ ((∀𝑥 ¬ 𝜑 → ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) |
6 | 2, 3, 5 | 3bitri 297 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) |
7 | df-or 847 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (¬ ∃𝑥𝜑 → ∃𝑥𝜓)) | |
8 | 6, 7 | bitr4i 278 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 846 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 |
This theorem is referenced by: 19.34 1986 19.44v 1992 19.45v 1993 19.44 2238 19.45 2239 eeor 2339 rexun 4219 uniprg 4947 uniun 4954 unopab 5248 zfpair 5439 dmun 5935 dmopab2rex 5942 coundi 6278 coundir 6279 kmlem16 10235 vdwapun 17021 satfdm 35337 satf0op 35345 dmopab3rexdif 35373 bj-nnfor 36716 bj-nnford 36717 exor 42622 pm10.42 44333 |
Copyright terms: Public domain | W3C validator |