Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exp12bd Structured version   Visualization version   GIF version

Theorem exp12bd 46141
Description: The import-export theorem (impexp 451) for biconditionals (deduction form). (Contributed by Zhi Wang, 3-Sep-2024.)
Hypothesis
Ref Expression
exp12bd.1 (𝜑 → (((𝜓𝜒) → 𝜃) ↔ ((𝜏𝜂) → 𝜁)))
Assertion
Ref Expression
exp12bd (𝜑 → ((𝜓 → (𝜒𝜃)) ↔ (𝜏 → (𝜂𝜁))))

Proof of Theorem exp12bd
StepHypRef Expression
1 exp12bd.1 . 2 (𝜑 → (((𝜓𝜒) → 𝜃) ↔ ((𝜏𝜂) → 𝜁)))
2 impexp 451 . 2 (((𝜓𝜒) → 𝜃) ↔ (𝜓 → (𝜒𝜃)))
3 impexp 451 . 2 (((𝜏𝜂) → 𝜁) ↔ (𝜏 → (𝜂𝜁)))
41, 2, 33bitr3g 313 1 (𝜑 → ((𝜓 → (𝜒𝜃)) ↔ (𝜏 → (𝜂𝜁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator