| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exp12bd | Structured version Visualization version GIF version | ||
| Description: The import-export theorem (impexp 450) for biconditionals (deduction form). (Contributed by Zhi Wang, 3-Sep-2024.) |
| Ref | Expression |
|---|---|
| exp12bd.1 | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜏 ∧ 𝜂) → 𝜁))) |
| Ref | Expression |
|---|---|
| exp12bd | ⊢ (𝜑 → ((𝜓 → (𝜒 → 𝜃)) ↔ (𝜏 → (𝜂 → 𝜁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp12bd.1 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜏 ∧ 𝜂) → 𝜁))) | |
| 2 | impexp 450 | . 2 ⊢ (((𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜓 → (𝜒 → 𝜃))) | |
| 3 | impexp 450 | . 2 ⊢ (((𝜏 ∧ 𝜂) → 𝜁) ↔ (𝜏 → (𝜂 → 𝜁))) | |
| 4 | 1, 2, 3 | 3bitr3g 313 | 1 ⊢ (𝜑 → ((𝜓 → (𝜒 → 𝜃)) ↔ (𝜏 → (𝜂 → 𝜁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |