![]() |
Metamath
Proof Explorer Theorem List (p. 476 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-odd 47501 | Define the set of odd numbers. (Contributed by AV, 14-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} | ||
Theorem | iseven 47502 | The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | ||
Theorem | isodd 47503 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | ||
Theorem | evenz 47504 | An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) | ||
Theorem | oddz 47505 | An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) | ||
Theorem | evendiv2z 47506 | The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) | ||
Theorem | oddp1div2z 47507 | The result of dividing an odd number increased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ) | ||
Theorem | oddm1div2z 47508 | The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ((𝑍 − 1) / 2) ∈ ℤ) | ||
Theorem | isodd2 47509 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd number decreased by 1 and then divided by 2 is still an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 − 1) / 2) ∈ ℤ)) | ||
Theorem | dfodd2 47510 | Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} | ||
Theorem | dfodd6 47511* | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)} | ||
Theorem | dfeven4 47512* | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} | ||
Theorem | evenm1odd 47513 | The predecessor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Even → (𝑍 − 1) ∈ Odd ) | ||
Theorem | evenp1odd 47514 | The successor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Even → (𝑍 + 1) ∈ Odd ) | ||
Theorem | oddp1eveni 47515 | The successor of an odd number is even. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Odd → (𝑍 + 1) ∈ Even ) | ||
Theorem | oddm1eveni 47516 | The predecessor of an odd number is even. (Contributed by AV, 6-Jul-2020.) |
⊢ (𝑍 ∈ Odd → (𝑍 − 1) ∈ Even ) | ||
Theorem | evennodd 47517 | An even number is not an odd number. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Even → ¬ 𝑍 ∈ Odd ) | ||
Theorem | oddneven 47518 | An odd number is not an even number. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ¬ 𝑍 ∈ Even ) | ||
Theorem | enege 47519 | The negative of an even number is even. (Contributed by AV, 20-Jun-2020.) |
⊢ (𝐴 ∈ Even → -𝐴 ∈ Even ) | ||
Theorem | onego 47520 | The negative of an odd number is odd. (Contributed by AV, 20-Jun-2020.) |
⊢ (𝐴 ∈ Odd → -𝐴 ∈ Odd ) | ||
Theorem | m1expevenALTV 47521 | Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.) |
⊢ (𝑁 ∈ Even → (-1↑𝑁) = 1) | ||
Theorem | m1expoddALTV 47522 | Exponentiation of -1 by an odd power. (Contributed by AV, 6-Jul-2020.) |
⊢ (𝑁 ∈ Odd → (-1↑𝑁) = -1) | ||
Theorem | dfeven2 47523 | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧} | ||
Theorem | dfodd3 47524 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} | ||
Theorem | iseven2 47525 | The predicate "is an even number". An even number is an integer which is divisible by 2. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ 2 ∥ 𝑍)) | ||
Theorem | isodd3 47526 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ¬ 2 ∥ 𝑍)) | ||
Theorem | 2dvdseven 47527 | 2 divides an even number. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Even → 2 ∥ 𝑍) | ||
Theorem | m2even 47528 | A multiple of 2 is an even number. (Contributed by AV, 5-Jun-2023.) |
⊢ (𝑍 ∈ ℤ → (2 · 𝑍) ∈ Even ) | ||
Theorem | 2ndvdsodd 47529 | 2 does not divide an odd number. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ¬ 2 ∥ 𝑍) | ||
Theorem | 2dvdsoddp1 47530 | 2 divides an odd number increased by 1. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Odd → 2 ∥ (𝑍 + 1)) | ||
Theorem | 2dvdsoddm1 47531 | 2 divides an odd number decreased by 1. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Odd → 2 ∥ (𝑍 − 1)) | ||
Theorem | dfeven3 47532 | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 0} | ||
Theorem | dfodd4 47533 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 1} | ||
Theorem | dfodd5 47534 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) ≠ 0} | ||
Theorem | zefldiv2ALTV 47535 | The floor of an even number divided by 2 is equal to the even number divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
⊢ (𝑁 ∈ Even → (⌊‘(𝑁 / 2)) = (𝑁 / 2)) | ||
Theorem | zofldiv2ALTV 47536 | The floor of an odd numer divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) | ||
Theorem | oddflALTV 47537 | Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 18-Jun-2020.) |
⊢ (𝐾 ∈ Odd → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1)) | ||
Theorem | iseven5 47538 | The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) |
⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 2)) | ||
Theorem | isodd7 47539 | The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 1)) | ||
Theorem | dfeven5 47540 | Alternate definition for even numbers. (Contributed by AV, 1-Jul-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 2} | ||
Theorem | dfodd7 47541 | Alternate definition for odd numbers. (Contributed by AV, 1-Jul-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 1} | ||
Theorem | gcd2odd1 47542 | The greatest common divisor of an odd number and 2 is 1, i.e., 2 and any odd number are coprime. Remark: The proof using dfodd7 47541 is longer (see proof in comment)! (Contributed by AV, 5-Jun-2023.) |
⊢ (𝑍 ∈ Odd → (𝑍 gcd 2) = 1) | ||
Theorem | zneoALTV 47543 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Revised by AV, 16-Jun-2020.) |
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → 𝐴 ≠ 𝐵) | ||
Theorem | zeoALTV 47544 | An integer is even or odd. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ ℤ → (𝑍 ∈ Even ∨ 𝑍 ∈ Odd )) | ||
Theorem | zeo2ALTV 47545 | An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) (Revised by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ ℤ → (𝑍 ∈ Even ↔ ¬ 𝑍 ∈ Odd )) | ||
Theorem | nneoALTV 47546 | A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd )) | ||
Theorem | nneoiALTV 47547 | A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.) (Revised by AV, 19-Jun-2020.) |
⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd ) | ||
Theorem | odd2np1ALTV 47548* | An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | ||
Theorem | oddm1evenALTV 47549 | An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 − 1) ∈ Even )) | ||
Theorem | oddp1evenALTV 47550 | An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 + 1) ∈ Even )) | ||
Theorem | oexpnegALTV 47551 | The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) (Revised by AV, 19-Jun-2020.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
Theorem | oexpnegnz 47552 | The exponential of the negative of a number not being 0, when the exponent is odd. (Contributed by AV, 19-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
Theorem | bits0ALTV 47553 | Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd )) | ||
Theorem | bits0eALTV 47554 | The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ Even → ¬ 0 ∈ (bits‘𝑁)) | ||
Theorem | bits0oALTV 47555 | The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ Odd → 0 ∈ (bits‘𝑁)) | ||
Theorem | divgcdoddALTV 47556 | Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd )) | ||
Theorem | opoeALTV 47557 | The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even ) | ||
Theorem | opeoALTV 47558 | The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd ) | ||
Theorem | omoeALTV 47559 | The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Even ) | ||
Theorem | omeoALTV 47560 | The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Odd ) | ||
Theorem | oddprmALTV 47561 | A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd ) | ||
Theorem | 0evenALTV 47562 | 0 is an even number. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 17-Jun-2020.) |
⊢ 0 ∈ Even | ||
Theorem | 0noddALTV 47563 | 0 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 17-Jun-2020.) |
⊢ 0 ∉ Odd | ||
Theorem | 1oddALTV 47564 | 1 is an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
⊢ 1 ∈ Odd | ||
Theorem | 1nevenALTV 47565 | 1 is not an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
⊢ 1 ∉ Even | ||
Theorem | 2evenALTV 47566 | 2 is an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
⊢ 2 ∈ Even | ||
Theorem | 2noddALTV 47567 | 2 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
⊢ 2 ∉ Odd | ||
Theorem | nn0o1gt2ALTV 47568 | An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁)) | ||
Theorem | nnoALTV 47569 | An alternate characterization of an odd number greater than 1. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ) | ||
Theorem | nn0oALTV 47570 | An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Revised by AV, 21-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0) | ||
Theorem | nn0e 47571 | An alternate characterization of an even nonnegative integer. (Contributed by AV, 22-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ0) | ||
Theorem | nneven 47572 | An alternate characterization of an even positive integer. (Contributed by AV, 5-Jun-2023.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ) | ||
Theorem | nn0onn0exALTV 47573* | For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) | ||
Theorem | nn0enn0exALTV 47574* | For each even nonnegative integer there is a nonnegative integer which, multiplied by 2, results in the even nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ0 𝑁 = (2 · 𝑚)) | ||
Theorem | nnennexALTV 47575* | For each even positive integer there is a positive integer which, multiplied by 2, results in the even positive integer. (Contributed by AV, 5-Jun-2023.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ 𝑁 = (2 · 𝑚)) | ||
Theorem | nnpw2evenALTV 47576 | 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 20-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ Even ) | ||
Theorem | epoo 47577 | The sum of an even and an odd is odd. (Contributed by AV, 24-Jul-2020.) |
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Odd ) | ||
Theorem | emoo 47578 | The difference of an even and an odd is odd. (Contributed by AV, 24-Jul-2020.) |
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Odd ) | ||
Theorem | epee 47579 | The sum of two even numbers is even. (Contributed by AV, 21-Jul-2020.) |
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Even ) | ||
Theorem | emee 47580 | The difference of two even numbers is even. (Contributed by AV, 21-Jul-2020.) |
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Even ) | ||
Theorem | evensumeven 47581 | If a summand is even, the other summand is even iff the sum is even. (Contributed by AV, 21-Jul-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → (𝐴 ∈ Even ↔ (𝐴 + 𝐵) ∈ Even )) | ||
Theorem | 3odd 47582 | 3 is an odd number. (Contributed by AV, 20-Jul-2020.) |
⊢ 3 ∈ Odd | ||
Theorem | 4even 47583 | 4 is an even number. (Contributed by AV, 23-Jul-2020.) |
⊢ 4 ∈ Even | ||
Theorem | 5odd 47584 | 5 is an odd number. (Contributed by AV, 23-Jul-2020.) |
⊢ 5 ∈ Odd | ||
Theorem | 6even 47585 | 6 is an even number. (Contributed by AV, 20-Jul-2020.) |
⊢ 6 ∈ Even | ||
Theorem | 7odd 47586 | 7 is an odd number. (Contributed by AV, 20-Jul-2020.) |
⊢ 7 ∈ Odd | ||
Theorem | 8even 47587 | 8 is an even number. (Contributed by AV, 23-Jul-2020.) |
⊢ 8 ∈ Even | ||
Theorem | evenprm2 47588 | A prime number is even iff it is 2. (Contributed by AV, 21-Jul-2020.) |
⊢ (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2)) | ||
Theorem | oddprmne2 47589 | Every prime number not being 2 is an odd prime number. (Contributed by AV, 21-Aug-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) ↔ 𝑃 ∈ (ℙ ∖ {2})) | ||
Theorem | oddprmuzge3 47590 | A prime number which is odd is an integer greater than or equal to 3. (Contributed by AV, 20-Jul-2020.) (Proof shortened by AV, 21-Aug-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) → 𝑃 ∈ (ℤ≥‘3)) | ||
Theorem | evenltle 47591 | If an even number is greater than another even number, then it is greater than or equal to the other even number plus 2. (Contributed by AV, 25-Dec-2021.) |
⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁) | ||
Theorem | odd2prm2 47592 | If an odd number is the sum of two prime numbers, one of the prime numbers must be 2. (Contributed by AV, 26-Dec-2021.) |
⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) | ||
Theorem | even3prm2 47593 | If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021.) |
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2)) | ||
Theorem | mogoldbblem 47594* | Lemma for mogoldbb 47659. (Contributed by AV, 26-Dec-2021.) |
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)) | ||
Theorem | perfectALTVlem1 47595 | Lemma for perfectALTV 47597. (Contributed by Mario Carneiro, 7-Jun-2016.) (Revised by AV, 1-Jul-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Odd ) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)) | ||
Theorem | perfectALTVlem2 47596 | Lemma for perfectALTV 47597. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Odd ) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1))) | ||
Theorem | perfectALTV 47597* | The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime). (It follows from this that 𝑝 is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) (Proof modification is discouraged.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))) | ||
"In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem ... [which] states that if p is prime and a is coprime to p, then a^(p-1)-1 is divisible by p [see fermltl 16831]. For an integer a > 1, if a composite integer x divides a^(x-1)-1, then x is called a Fermat pseudoprime to base a. In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes the Fermat primality test for the base a. The false statement [see nfermltl2rev 47617] that all numbers that pass the Fermat primality test for base 2, are prime, is called the Chinese hypothesis.", see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime 47617, 29-May-2023. | ||
Syntax | cfppr 47598 | Extend class notation with the Fermat pseudoprimes. |
class FPPr | ||
Definition | df-fppr 47599* | Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ ∧ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.) |
⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) | ||
Theorem | fppr 47600* | The set of Fermat pseudoprimes to the base 𝑁. (Contributed by AV, 29-May-2023.) |
⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |