| Metamath
Proof Explorer Theorem List (p. 476 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | prprelb 47501 | An element of the set of all proper unordered pairs over a given set 𝑉 is a subset of 𝑉 of size two. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (𝑃 ∈ (Pairsproper‘𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) | ||
| Theorem | prprelprb 47502* | A set is an element of the set of all proper unordered pairs over a given set 𝑋 iff it is a pair of different elements of the set 𝑋. (Contributed by AV, 7-May-2023.) |
| ⊢ (𝑃 ∈ (Pairsproper‘𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) | ||
| Theorem | prprspr2 47503* | The set of all proper unordered pairs over a given set 𝑉 is the set of all unordered pairs over that set of size two. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (Pairsproper‘𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} | ||
| Theorem | prprsprreu 47504* | There is a unique proper unordered pair over a given set 𝑉 fulfilling a wff iff there is a unique unordered pair over 𝑉 of size two fulfilling this wff. (Contributed by AV, 30-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (∃!𝑝 ∈ (Pairsproper‘𝑉)𝜑 ↔ ∃!𝑝 ∈ (Pairs‘𝑉)((♯‘𝑝) = 2 ∧ 𝜑))) | ||
| Theorem | prprreueq 47505* | There is a unique proper unordered pair over a given set 𝑉 fulfilling a wff iff there is a unique subset of 𝑉 of size two fulfilling this wff. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (∃!𝑝 ∈ (Pairsproper‘𝑉)𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑))) | ||
| Theorem | sbcpr 47506* | The proper substitution of an unordered pair for a setvar variable corresponds to a proper substitution of each of its elements. (Contributed by AV, 7-Apr-2023.) |
| ⊢ (𝑝 = {𝑥, 𝑦} → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([{𝑎, 𝑏} / 𝑝]𝜑 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓) | ||
| Theorem | reupr 47507* | There is a unique unordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 7-Apr-2023.) |
| ⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) & ⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) | ||
| Theorem | reuprpr 47508* | There is a unique proper unordered pair fulfilling a wff iff there are uniquely two different sets fulfilling a corresponding wff. (Contributed by AV, 30-Apr-2023.) |
| ⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) & ⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairsproper‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) | ||
| Theorem | poprelb 47509 | Equality for unordered pairs with partially ordered elements. (Contributed by AV, 9-Jul-2023.) |
| ⊢ (((Rel 𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | 2exopprim 47510 | The existence of an ordered pair fulfilling a wff implies the existence of an unordered pair fulfilling the wff. (Contributed by AV, 29-Jul-2023.) |
| ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) | ||
| Theorem | reuopreuprim 47511* | There is a unique unordered pair with ordered elements fulfilling a wff if there is a unique ordered pair fulfilling the wff. (Contributed by AV, 28-Jul-2023.) |
| ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (𝑋 × 𝑋)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃!𝑝 ∈ (Pairs‘𝑋)∃𝑎∃𝑏(𝑝 = {𝑎, 𝑏} ∧ 𝜑))) | ||
At first, the (sequence of) Fermat numbers FermatNo (the 𝑛-th Fermat number is denoted as (FermatNo‘𝑛)) is defined, see df-fmtno 47513, and basic theorems are provided. Afterwards, it is shown that the first five Fermat numbers are prime, the (first) five Fermat primes, see fmtnofz04prm 47562, but that the fifth Fermat number (counting starts at 0!) is not prime, see fmtno5nprm 47568. The fourth Fermat number (i.e., the fifth Fermat prime) (FermatNo‘4) = ;;;;65537 is currently the biggest number proven to be prime in set.mm, see 65537prm 47561 (previously, it was ;;;4001, see 4001prm 17074). Another important result of this section is Goldbach's theorem goldbachth 47532, showing that two different Fermut numbers are coprime. By this, it can be proven that there is an infinite number of primes, see prminf2 47573. Finally, it is shown that every prime of the form ((2↑𝑘) + 1) must be a Fermat number (i.e., a Fermat prime), see 2pwp1prmfmtno 47575. | ||
| Syntax | cfmtno 47512 | Extend class notation with the Fermat numbers. |
| class FermatNo | ||
| Definition | df-fmtno 47513 | Define the function that enumerates the Fermat numbers, see definition in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) | ||
| Theorem | fmtno 47514 | The 𝑁 th Fermat number. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | ||
| Theorem | fmtnoge3 47515 | Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ≥‘3)) | ||
| Theorem | fmtnonn 47516 | Each Fermat number is a positive integer. (Contributed by AV, 26-Jul-2021.) (Proof shortened by AV, 4-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ) | ||
| Theorem | fmtnom1nn 47517 | A Fermat number minus one is a power of a power of two. (Contributed by AV, 29-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → ((FermatNo‘𝑁) − 1) = (2↑(2↑𝑁))) | ||
| Theorem | fmtnoodd 47518 | Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁)) | ||
| Theorem | fmtnorn 47519* | A Fermat number is a function value of the enumeration of the Fermat numbers. (Contributed by AV, 3-Aug-2021.) |
| ⊢ (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹) | ||
| Theorem | fmtnof1 47520 | The enumeration of the Fermat numbers is a one-one function into the positive integers. (Contributed by AV, 3-Aug-2021.) |
| ⊢ FermatNo:ℕ0–1-1→ℕ | ||
| Theorem | fmtnoinf 47521 | The set of Fermat numbers is infinite. (Contributed by AV, 3-Aug-2021.) |
| ⊢ ran FermatNo ∉ Fin | ||
| Theorem | fmtnorec1 47522 | The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties, 22-Jul-2021. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) | ||
| Theorem | sqrtpwpw2p 47523 | The floor of the square root of 2 to the power of 2 to the power of a positive integer plus a bounded nonnegative integer. (Contributed by AV, 28-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1)))) | ||
| Theorem | fmtnosqrt 47524 | The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1)))) | ||
| Theorem | fmtno0 47525 | The 0 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘0) = 3 | ||
| Theorem | fmtno1 47526 | The 1 st Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘1) = 5 | ||
| Theorem | fmtnorec2lem 47527* | Lemma for fmtnorec2 47528 (induction step). (Contributed by AV, 29-Jul-2021.) |
| ⊢ (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))) | ||
| Theorem | fmtnorec2 47528* | The second recurrence relation for Fermat numbers, see ProofWiki "Product of Sequence of Fermat Numbers plus 2", 29-Jul-2021, https://proofwiki.org/wiki/Product_of_Sequence_of_Fermat_Numbers_plus_2 or Wikipedia "Fermat number", 29-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 29-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2)) | ||
| Theorem | fmtnodvds 47529 | Any Fermat number divides a greater Fermat number minus 2. Corollary of fmtnorec2 47528, see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2)) | ||
| Theorem | goldbachthlem1 47530 | Lemma 1 for goldbachth 47532. (Contributed by AV, 1-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) | ||
| Theorem | goldbachthlem2 47531 | Lemma 2 for goldbachth 47532. (Contributed by AV, 1-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | ||
| Theorem | goldbachth 47532 | Goldbach's theorem: Two different Fermat numbers are coprime. See ProofWiki "Goldbach's theorem", 31-Jul-2021, https://proofwiki.org/wiki/Goldbach%27s_Theorem or Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 1-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | ||
| Theorem | fmtnorec3 47533* | The third recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 2-Aug-2021.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛)))) | ||
| Theorem | fmtnorec4 47534 | The fourth recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 31-Jul-2021.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (FermatNo‘𝑁) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2)))) | ||
| Theorem | fmtno2 47535 | The 2 nd Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘2) = ;17 | ||
| Theorem | fmtno3 47536 | The 3 rd Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘3) = ;;257 | ||
| Theorem | fmtno4 47537 | The 4 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘4) = ;;;;65537 | ||
| Theorem | fmtno5lem1 47538 | Lemma 1 for fmtno5 47542. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;65536 · 6) = ;;;;;393216 | ||
| Theorem | fmtno5lem2 47539 | Lemma 2 for fmtno5 47542. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;65536 · 5) = ;;;;;327680 | ||
| Theorem | fmtno5lem3 47540 | Lemma 3 for fmtno5 47542. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;65536 · 3) = ;;;;;196608 | ||
| Theorem | fmtno5lem4 47541 | Lemma 4 for fmtno5 47542. (Contributed by AV, 30-Jul-2021.) |
| ⊢ (;;;;65536↑2) = ;;;;;;;;;4294967296 | ||
| Theorem | fmtno5 47542 | The 5 th Fermat number. (Contributed by AV, 30-Jul-2021.) |
| ⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 | ||
| Theorem | fmtno0prm 47543 | The 0 th Fermat number is a prime (first Fermat prime). (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘0) ∈ ℙ | ||
| Theorem | fmtno1prm 47544 | The 1 st Fermat number is a prime (second Fermat prime). (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘1) ∈ ℙ | ||
| Theorem | fmtno2prm 47545 | The 2 nd Fermat number is a prime (third Fermat prime). (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘2) ∈ ℙ | ||
| Theorem | 257prm 47546 | 257 is a prime number (the fourth Fermat prime). (Contributed by AV, 15-Jun-2021.) |
| ⊢ ;;257 ∈ ℙ | ||
| Theorem | fmtno3prm 47547 | The 3 rd Fermat number is a prime (fourth Fermat prime). (Contributed by AV, 15-Jun-2021.) |
| ⊢ (FermatNo‘3) ∈ ℙ | ||
| Theorem | odz2prm2pw 47548 | Any power of two is coprime to any prime not being two. (Contributed by AV, 25-Jul-2021.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) | ||
| Theorem | fmtnoprmfac1lem 47549 | Lemma for fmtnoprmfac1 47550: The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021.) (Proof shortened by AV, 18-Mar-2022.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) | ||
| Theorem | fmtnoprmfac1 47550* | Divisor of Fermat number (special form of Euler's result, see fmtnofac1 47555): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+1)+1 where k is a positive integer. (Contributed by AV, 25-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) | ||
| Theorem | fmtnoprmfac2lem1 47551 | Lemma for fmtnoprmfac2 47552. (Contributed by AV, 26-Jul-2021.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1) | ||
| Theorem | fmtnoprmfac2 47552* | Divisor of Fermat number (special form of Lucas' result, see fmtnofac2 47554): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+2)+1 where k is a positive integer. (Contributed by AV, 26-Jul-2021.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) | ||
| Theorem | fmtnofac2lem 47553* | Lemma for fmtnofac2 47554 (Induction step). (Contributed by AV, 30-Jul-2021.) |
| ⊢ ((𝑦 ∈ (ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2)) → ((((𝑁 ∈ (ℤ≥‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ≥‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))) | ||
| Theorem | fmtnofac2 47554* | Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 47555: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) | ||
| Theorem | fmtnofac1 47555* |
Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of
Fermat Number/Euler's Result", 24-Jul-2021,
https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result):
"Let Fn be a Fermat number. Let
m be divisor of Fn. Then m is in the
form: k*2^(n+1)+1 where k is a positive integer." Here, however, k
must
be a nonnegative integer, because k must be 0 to represent 1 (which is a
divisor of Fn ).
Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 47554. (Contributed by AV, 30-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) | ||
| Theorem | fmtno4sqrt 47556 | The floor of the square root of the fourth Fermat number is 256. (Contributed by AV, 28-Jul-2021.) |
| ⊢ (⌊‘(√‘(FermatNo‘4))) = ;;256 | ||
| Theorem | fmtno4prmfac 47557 | If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | ||
| Theorem | fmtno4prmfac193 47558 | If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) | ||
| Theorem | fmtno4nprmfac193 47559 | 193 is not a (prime) factor of the fourth Fermat number. (Contributed by AV, 24-Jul-2021.) |
| ⊢ ¬ ;;193 ∥ (FermatNo‘4) | ||
| Theorem | fmtno4prm 47560 | The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
| ⊢ (FermatNo‘4) ∈ ℙ | ||
| Theorem | 65537prm 47561 | 65537 is a prime number (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
| ⊢ ;;;;65537 ∈ ℙ | ||
| Theorem | fmtnofz04prm 47562 | The first five Fermat numbers are prime, see remark in [ApostolNT] p. 7. (Contributed by AV, 28-Jul-2021.) |
| ⊢ (𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ) | ||
| Theorem | fmtnole4prm 47563 | The first five Fermat numbers are prime. (Contributed by AV, 28-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 4) → (FermatNo‘𝑁) ∈ ℙ) | ||
| Theorem | fmtno5faclem1 47564 | Lemma 1 for fmtno5fac 47567. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 | ||
| Theorem | fmtno5faclem2 47565 | Lemma 2 for fmtno5fac 47567. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 | ||
| Theorem | fmtno5faclem3 47566 | Lemma 3 for fmtno5fac 47567. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;;;;;402025020 + ;;;;;;;26801668) = ;;;;;;;;428826688 | ||
| Theorem | fmtno5fac 47567 | The factorization of the 5 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (FermatNo‘5) = (;;;;;;6700417 · ;;641) | ||
| Theorem | fmtno5nprm 47568 | The 5 th Fermat number is a not a prime. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (FermatNo‘5) ∉ ℙ | ||
| Theorem | prmdvdsfmtnof1lem1 47569* | Lemma 1 for prmdvdsfmtnof1 47572. (Contributed by AV, 3-Aug-2021.) |
| ⊢ 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹}, ℝ, < ) & ⊢ 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺}, ℝ, < ) ⇒ ⊢ ((𝐹 ∈ (ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺))) | ||
| Theorem | prmdvdsfmtnof1lem2 47570 | Lemma 2 for prmdvdsfmtnof1 47572. (Contributed by AV, 3-Aug-2021.) |
| ⊢ ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐹 = 𝐺)) | ||
| Theorem | prmdvdsfmtnof 47571* | The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.) |
| ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) ⇒ ⊢ 𝐹:ran FermatNo⟶ℙ | ||
| Theorem | prmdvdsfmtnof1 47572* | The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021.) |
| ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) ⇒ ⊢ 𝐹:ran FermatNo–1-1→ℙ | ||
| Theorem | prminf2 47573 | The set of prime numbers is infinite. The proof of this variant of prminf 16845 is based on Goldbach's theorem goldbachth 47532 (via prmdvdsfmtnof1 47572 and prmdvdsfmtnof1lem2 47570), see Wikipedia "Fermat number", 4-Aug-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties 47570. (Contributed by AV, 4-Aug-2021.) |
| ⊢ ℙ ∉ Fin | ||
| Theorem | 2pwp1prm 47574* | For ((2↑𝑘) + 1) to be prime, 𝑘 must be a power of 2, see Wikipedia "Fermat number", section "Other theorms about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number, 5-Aug-2021. (Contributed by AV, 7-Aug-2021.) |
| ⊢ ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) | ||
| Theorem | 2pwp1prmfmtno 47575* | Every prime number of the form ((2↑𝑘) + 1) must be a Fermat number. (Contributed by AV, 7-Aug-2021.) |
| ⊢ ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛)) | ||
"In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2^n-1 for some integer n. They are named after Marin Mersenne ... If n is a composite number then so is 2^n-1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2^p-1 for some prime p.", see Wikipedia "Mersenne prime", 16-Aug-2021, https://en.wikipedia.org/wiki/Mersenne_prime. See also definition in [ApostolNT] p. 4. This means that if Mn = 2^n-1 is prime, than n must be prime, too, see mersenne 27154. The reverse direction is not generally valid: If p is prime, then Mp = 2^p-1 needs not be prime, e.g. M11 = 2047 = 23 x 89, see m11nprm 47586. This is an example of sgprmdvdsmersenne 47589, stating that if p with p = 3 modulo 4 (here 11) and q=2p+1 (here 23) are prime, then q divides Mp. "In number theory, a prime number p is a Sophie Germain prime if 2p+1 is also prime. The number 2p+1 associated with a Sophie Germain prime is called a safe prime.", see Wikipedia "Safe and Sophie Germain primes", 21-Aug-2021, https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes 47589. Hence, 11 is a Sophie Germain prime and 2x11+1=23 is its associated safe prime. By sfprmdvdsmersenne 47588, it is shown that if a safe prime q is congruent to 7 modulo 8, then it is a divisor of the Mersenne number with its matching Sophie Germain prime as exponent. The main result of this section, however, is the formal proof of a theorem of S. Ligh and L. Neal in "A note on Mersenne numbers", see lighneal 47596. | ||
| Theorem | m2prm 47576 | The second Mersenne number M2 = 3 is a prime number. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((2↑2) − 1) ∈ ℙ | ||
| Theorem | m3prm 47577 | The third Mersenne number M3 = 7 is a prime number. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((2↑3) − 1) ∈ ℙ | ||
| Theorem | flsqrt 47578 | A condition equivalent to the floor of a square root. (Contributed by AV, 17-Aug-2021.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2)))) | ||
| Theorem | flsqrt5 47579 | The floor of the square root of a nonnegative number is 5 iff the number is between 25 and 35. (Contributed by AV, 17-Aug-2021.) |
| ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((;25 ≤ 𝑋 ∧ 𝑋 < ;36) ↔ (⌊‘(√‘𝑋)) = 5)) | ||
| Theorem | 3ndvds4 47580 | 3 does not divide 4. (Contributed by AV, 18-Aug-2021.) |
| ⊢ ¬ 3 ∥ 4 | ||
| Theorem | 139prmALT 47581 | 139 is a prime number. In contrast to 139prm 17053, the proof of this theorem uses 3dvds2dec 16262 for checking the divisibility by 3. Although the proof using 3dvds2dec 16262 is longer (regarding size: 1849 characters compared with 1809 for 139prm 17053), the number of essential steps is smaller (301 compared with 327 for 139prm 17053). (Contributed by Mario Carneiro, 19-Feb-2014.) (Revised by AV, 18-Aug-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ;;139 ∈ ℙ | ||
| Theorem | 31prm 47582 | 31 is a prime number. In contrast to 37prm 17050, the proof of this theorem is not based on the "blanket" prmlem2 17049, but on isprm7 16637. Although the checks for non-divisibility by the primes 7 to 23 are not needed, the proof is much longer (regarding size) than the proof of 37prm 17050 (1810 characters compared with 1213 for 37prm 17050). The number of essential steps, however, is much smaller (138 compared with 213 for 37prm 17050). (Contributed by AV, 17-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ ;31 ∈ ℙ | ||
| Theorem | m5prm 47583 | The fifth Mersenne number M5 = 31 is a prime number. (Contributed by AV, 17-Aug-2021.) |
| ⊢ ((2↑5) − 1) ∈ ℙ | ||
| Theorem | 127prm 47584 | 127 is a prime number. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ ;;127 ∈ ℙ | ||
| Theorem | m7prm 47585 | The seventh Mersenne number M7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021.) |
| ⊢ ((2↑7) − 1) ∈ ℙ | ||
| Theorem | m11nprm 47586 | The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
| ⊢ ((2↑;11) − 1) = (;89 · ;23) | ||
| Theorem | mod42tp1mod8 47587 | If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7) | ||
| Theorem | sfprmdvdsmersenne 47588 | If 𝑄 is a safe prime (i.e. 𝑄 = ((2 · 𝑃) + 1) for a prime 𝑃) with 𝑄≡7 (mod 8), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
| Theorem | sgprmdvdsmersenne 47589 | If 𝑃 is a Sophie Germain prime (i.e. 𝑄 = ((2 · 𝑃) + 1) is also prime) with 𝑃≡3 (mod 4), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
| ⊢ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 3) ∧ (𝑄 = ((2 · 𝑃) + 1) ∧ 𝑄 ∈ ℙ)) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
| Theorem | lighneallem1 47590 | Lemma 1 for lighneal 47596. (Contributed by AV, 11-Aug-2021.) |
| ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) | ||
| Theorem | lighneallem2 47591 | Lemma 2 for lighneal 47596. (Contributed by AV, 13-Aug-2021.) |
| ⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
| Theorem | lighneallem3 47592 | Lemma 3 for lighneal 47596. (Contributed by AV, 11-Aug-2021.) |
| ⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
| Theorem | lighneallem4a 47593 | Lemma 1 for lighneallem4 47595. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘3) ∧ 𝑆 = (((𝐴↑𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆) | ||
| Theorem | lighneallem4b 47594* | Lemma 2 for lighneallem4 47595. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)) ∈ (ℤ≥‘2)) | ||
| Theorem | lighneallem4 47595 | Lemma 3 for lighneal 47596. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
| Theorem | lighneal 47596 | If a power of a prime 𝑃 (i.e. 𝑃↑𝑀) is of the form 2↑𝑁 − 1, then 𝑁 must be prime and 𝑀 must be 1. Generalization of mersenne 27154 (where 𝑀 = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ)) | ||
| Theorem | modexp2m1d 47597 | The square of an integer which is -1 modulo a number greater than 1 is 1 modulo the same modulus. (Contributed by AV, 5-Jul-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 1 < 𝐸) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (-1 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴↑2) mod 𝐸) = 1) | ||
| Theorem | proththdlem 47598 | Lemma for proththd 47599. (Contributed by AV, 4-Jul-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) ⇒ ⊢ (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ)) | ||
| Theorem | proththd 47599* | Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 16836), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) & ⊢ (𝜑 → 𝐾 < (2↑𝑁)) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ℙ) | ||
| Theorem | 5tcu2e40 47600 | 5 times the cube of 2 is 40. (Contributed by AV, 4-Jul-2020.) |
| ⊢ (5 · (2↑3)) = ;40 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |