| Metamath
Proof Explorer Theorem List (p. 476 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fmtnosqrt 47501 | The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1)))) | ||
| Theorem | fmtno0 47502 | The 0 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘0) = 3 | ||
| Theorem | fmtno1 47503 | The 1 st Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘1) = 5 | ||
| Theorem | fmtnorec2lem 47504* | Lemma for fmtnorec2 47505 (induction step). (Contributed by AV, 29-Jul-2021.) |
| ⊢ (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))) | ||
| Theorem | fmtnorec2 47505* | The second recurrence relation for Fermat numbers, see ProofWiki "Product of Sequence of Fermat Numbers plus 2", 29-Jul-2021, https://proofwiki.org/wiki/Product_of_Sequence_of_Fermat_Numbers_plus_2 or Wikipedia "Fermat number", 29-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 29-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2)) | ||
| Theorem | fmtnodvds 47506 | Any Fermat number divides a greater Fermat number minus 2. Corollary of fmtnorec2 47505, see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2)) | ||
| Theorem | goldbachthlem1 47507 | Lemma 1 for goldbachth 47509. (Contributed by AV, 1-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) | ||
| Theorem | goldbachthlem2 47508 | Lemma 2 for goldbachth 47509. (Contributed by AV, 1-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | ||
| Theorem | goldbachth 47509 | Goldbach's theorem: Two different Fermat numbers are coprime. See ProofWiki "Goldbach's theorem", 31-Jul-2021, https://proofwiki.org/wiki/Goldbach%27s_Theorem or Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 1-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | ||
| Theorem | fmtnorec3 47510* | The third recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 2-Aug-2021.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛)))) | ||
| Theorem | fmtnorec4 47511 | The fourth recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 31-Jul-2021.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (FermatNo‘𝑁) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2)))) | ||
| Theorem | fmtno2 47512 | The 2 nd Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘2) = ;17 | ||
| Theorem | fmtno3 47513 | The 3 rd Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘3) = ;;257 | ||
| Theorem | fmtno4 47514 | The 4 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘4) = ;;;;65537 | ||
| Theorem | fmtno5lem1 47515 | Lemma 1 for fmtno5 47519. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;65536 · 6) = ;;;;;393216 | ||
| Theorem | fmtno5lem2 47516 | Lemma 2 for fmtno5 47519. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;65536 · 5) = ;;;;;327680 | ||
| Theorem | fmtno5lem3 47517 | Lemma 3 for fmtno5 47519. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;65536 · 3) = ;;;;;196608 | ||
| Theorem | fmtno5lem4 47518 | Lemma 4 for fmtno5 47519. (Contributed by AV, 30-Jul-2021.) |
| ⊢ (;;;;65536↑2) = ;;;;;;;;;4294967296 | ||
| Theorem | fmtno5 47519 | The 5 th Fermat number. (Contributed by AV, 30-Jul-2021.) |
| ⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 | ||
| Theorem | fmtno0prm 47520 | The 0 th Fermat number is a prime (first Fermat prime). (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘0) ∈ ℙ | ||
| Theorem | fmtno1prm 47521 | The 1 st Fermat number is a prime (second Fermat prime). (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘1) ∈ ℙ | ||
| Theorem | fmtno2prm 47522 | The 2 nd Fermat number is a prime (third Fermat prime). (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘2) ∈ ℙ | ||
| Theorem | 257prm 47523 | 257 is a prime number (the fourth Fermat prime). (Contributed by AV, 15-Jun-2021.) |
| ⊢ ;;257 ∈ ℙ | ||
| Theorem | fmtno3prm 47524 | The 3 rd Fermat number is a prime (fourth Fermat prime). (Contributed by AV, 15-Jun-2021.) |
| ⊢ (FermatNo‘3) ∈ ℙ | ||
| Theorem | odz2prm2pw 47525 | Any power of two is coprime to any prime not being two. (Contributed by AV, 25-Jul-2021.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) | ||
| Theorem | fmtnoprmfac1lem 47526 | Lemma for fmtnoprmfac1 47527: The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021.) (Proof shortened by AV, 18-Mar-2022.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) | ||
| Theorem | fmtnoprmfac1 47527* | Divisor of Fermat number (special form of Euler's result, see fmtnofac1 47532): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+1)+1 where k is a positive integer. (Contributed by AV, 25-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) | ||
| Theorem | fmtnoprmfac2lem1 47528 | Lemma for fmtnoprmfac2 47529. (Contributed by AV, 26-Jul-2021.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1) | ||
| Theorem | fmtnoprmfac2 47529* | Divisor of Fermat number (special form of Lucas' result, see fmtnofac2 47531): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+2)+1 where k is a positive integer. (Contributed by AV, 26-Jul-2021.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) | ||
| Theorem | fmtnofac2lem 47530* | Lemma for fmtnofac2 47531 (Induction step). (Contributed by AV, 30-Jul-2021.) |
| ⊢ ((𝑦 ∈ (ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2)) → ((((𝑁 ∈ (ℤ≥‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ≥‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))) | ||
| Theorem | fmtnofac2 47531* | Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 47532: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) | ||
| Theorem | fmtnofac1 47532* |
Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of
Fermat Number/Euler's Result", 24-Jul-2021,
https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result):
"Let Fn be a Fermat number. Let
m be divisor of Fn. Then m is in the
form: k*2^(n+1)+1 where k is a positive integer." Here, however, k
must
be a nonnegative integer, because k must be 0 to represent 1 (which is a
divisor of Fn ).
Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 47531. (Contributed by AV, 30-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) | ||
| Theorem | fmtno4sqrt 47533 | The floor of the square root of the fourth Fermat number is 256. (Contributed by AV, 28-Jul-2021.) |
| ⊢ (⌊‘(√‘(FermatNo‘4))) = ;;256 | ||
| Theorem | fmtno4prmfac 47534 | If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | ||
| Theorem | fmtno4prmfac193 47535 | If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) | ||
| Theorem | fmtno4nprmfac193 47536 | 193 is not a (prime) factor of the fourth Fermat number. (Contributed by AV, 24-Jul-2021.) |
| ⊢ ¬ ;;193 ∥ (FermatNo‘4) | ||
| Theorem | fmtno4prm 47537 | The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
| ⊢ (FermatNo‘4) ∈ ℙ | ||
| Theorem | 65537prm 47538 | 65537 is a prime number (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
| ⊢ ;;;;65537 ∈ ℙ | ||
| Theorem | fmtnofz04prm 47539 | The first five Fermat numbers are prime, see remark in [ApostolNT] p. 7. (Contributed by AV, 28-Jul-2021.) |
| ⊢ (𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ) | ||
| Theorem | fmtnole4prm 47540 | The first five Fermat numbers are prime. (Contributed by AV, 28-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 4) → (FermatNo‘𝑁) ∈ ℙ) | ||
| Theorem | fmtno5faclem1 47541 | Lemma 1 for fmtno5fac 47544. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 | ||
| Theorem | fmtno5faclem2 47542 | Lemma 2 for fmtno5fac 47544. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 | ||
| Theorem | fmtno5faclem3 47543 | Lemma 3 for fmtno5fac 47544. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;;;;;402025020 + ;;;;;;;26801668) = ;;;;;;;;428826688 | ||
| Theorem | fmtno5fac 47544 | The factorization of the 5 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (FermatNo‘5) = (;;;;;;6700417 · ;;641) | ||
| Theorem | fmtno5nprm 47545 | The 5 th Fermat number is a not a prime. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (FermatNo‘5) ∉ ℙ | ||
| Theorem | prmdvdsfmtnof1lem1 47546* | Lemma 1 for prmdvdsfmtnof1 47549. (Contributed by AV, 3-Aug-2021.) |
| ⊢ 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹}, ℝ, < ) & ⊢ 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺}, ℝ, < ) ⇒ ⊢ ((𝐹 ∈ (ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺))) | ||
| Theorem | prmdvdsfmtnof1lem2 47547 | Lemma 2 for prmdvdsfmtnof1 47549. (Contributed by AV, 3-Aug-2021.) |
| ⊢ ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐹 = 𝐺)) | ||
| Theorem | prmdvdsfmtnof 47548* | The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.) |
| ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) ⇒ ⊢ 𝐹:ran FermatNo⟶ℙ | ||
| Theorem | prmdvdsfmtnof1 47549* | The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021.) |
| ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) ⇒ ⊢ 𝐹:ran FermatNo–1-1→ℙ | ||
| Theorem | prminf2 47550 | The set of prime numbers is infinite. The proof of this variant of prminf 16933 is based on Goldbach's theorem goldbachth 47509 (via prmdvdsfmtnof1 47549 and prmdvdsfmtnof1lem2 47547), see Wikipedia "Fermat number", 4-Aug-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties 47547. (Contributed by AV, 4-Aug-2021.) |
| ⊢ ℙ ∉ Fin | ||
| Theorem | 2pwp1prm 47551* | For ((2↑𝑘) + 1) to be prime, 𝑘 must be a power of 2, see Wikipedia "Fermat number", section "Other theorms about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number, 5-Aug-2021. (Contributed by AV, 7-Aug-2021.) |
| ⊢ ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) | ||
| Theorem | 2pwp1prmfmtno 47552* | Every prime number of the form ((2↑𝑘) + 1) must be a Fermat number. (Contributed by AV, 7-Aug-2021.) |
| ⊢ ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛)) | ||
"In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2^n-1 for some integer n. They are named after Marin Mersenne ... If n is a composite number then so is 2^n-1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2^p-1 for some prime p.", see Wikipedia "Mersenne prime", 16-Aug-2021, https://en.wikipedia.org/wiki/Mersenne_prime. See also definition in [ApostolNT] p. 4. This means that if Mn = 2^n-1 is prime, than n must be prime, too, see mersenne 27188. The reverse direction is not generally valid: If p is prime, then Mp = 2^p-1 needs not be prime, e.g. M11 = 2047 = 23 x 89, see m11nprm 47563. This is an example of sgprmdvdsmersenne 47566, stating that if p with p = 3 modulo 4 (here 11) and q=2p+1 (here 23) are prime, then q divides Mp. "In number theory, a prime number p is a Sophie Germain prime if 2p+1 is also prime. The number 2p+1 associated with a Sophie Germain prime is called a safe prime.", see Wikipedia "Safe and Sophie Germain primes", 21-Aug-2021, https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes 47566. Hence, 11 is a Sophie Germain prime and 2x11+1=23 is its associated safe prime. By sfprmdvdsmersenne 47565, it is shown that if a safe prime q is congruent to 7 modulo 8, then it is a divisor of the Mersenne number with its matching Sophie Germain prime as exponent. The main result of this section, however, is the formal proof of a theorem of S. Ligh and L. Neal in "A note on Mersenne numbers", see lighneal 47573. | ||
| Theorem | m2prm 47553 | The second Mersenne number M2 = 3 is a prime number. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((2↑2) − 1) ∈ ℙ | ||
| Theorem | m3prm 47554 | The third Mersenne number M3 = 7 is a prime number. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((2↑3) − 1) ∈ ℙ | ||
| Theorem | flsqrt 47555 | A condition equivalent to the floor of a square root. (Contributed by AV, 17-Aug-2021.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2)))) | ||
| Theorem | flsqrt5 47556 | The floor of the square root of a nonnegative number is 5 iff the number is between 25 and 35. (Contributed by AV, 17-Aug-2021.) |
| ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((;25 ≤ 𝑋 ∧ 𝑋 < ;36) ↔ (⌊‘(√‘𝑋)) = 5)) | ||
| Theorem | 3ndvds4 47557 | 3 does not divide 4. (Contributed by AV, 18-Aug-2021.) |
| ⊢ ¬ 3 ∥ 4 | ||
| Theorem | 139prmALT 47558 | 139 is a prime number. In contrast to 139prm 17141, the proof of this theorem uses 3dvds2dec 16350 for checking the divisibility by 3. Although the proof using 3dvds2dec 16350 is longer (regarding size: 1849 characters compared with 1809 for 139prm 17141), the number of essential steps is smaller (301 compared with 327 for 139prm 17141). (Contributed by Mario Carneiro, 19-Feb-2014.) (Revised by AV, 18-Aug-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ;;139 ∈ ℙ | ||
| Theorem | 31prm 47559 | 31 is a prime number. In contrast to 37prm 17138, the proof of this theorem is not based on the "blanket" prmlem2 17137, but on isprm7 16725. Although the checks for non-divisibility by the primes 7 to 23 are not needed, the proof is much longer (regarding size) than the proof of 37prm 17138 (1810 characters compared with 1213 for 37prm 17138). The number of essential steps, however, is much smaller (138 compared with 213 for 37prm 17138). (Contributed by AV, 17-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ ;31 ∈ ℙ | ||
| Theorem | m5prm 47560 | The fifth Mersenne number M5 = 31 is a prime number. (Contributed by AV, 17-Aug-2021.) |
| ⊢ ((2↑5) − 1) ∈ ℙ | ||
| Theorem | 127prm 47561 | 127 is a prime number. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ ;;127 ∈ ℙ | ||
| Theorem | m7prm 47562 | The seventh Mersenne number M7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021.) |
| ⊢ ((2↑7) − 1) ∈ ℙ | ||
| Theorem | m11nprm 47563 | The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
| ⊢ ((2↑;11) − 1) = (;89 · ;23) | ||
| Theorem | mod42tp1mod8 47564 | If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7) | ||
| Theorem | sfprmdvdsmersenne 47565 | If 𝑄 is a safe prime (i.e. 𝑄 = ((2 · 𝑃) + 1) for a prime 𝑃) with 𝑄≡7 (mod 8), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
| Theorem | sgprmdvdsmersenne 47566 | If 𝑃 is a Sophie Germain prime (i.e. 𝑄 = ((2 · 𝑃) + 1) is also prime) with 𝑃≡3 (mod 4), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
| ⊢ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 3) ∧ (𝑄 = ((2 · 𝑃) + 1) ∧ 𝑄 ∈ ℙ)) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
| Theorem | lighneallem1 47567 | Lemma 1 for lighneal 47573. (Contributed by AV, 11-Aug-2021.) |
| ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) | ||
| Theorem | lighneallem2 47568 | Lemma 2 for lighneal 47573. (Contributed by AV, 13-Aug-2021.) |
| ⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
| Theorem | lighneallem3 47569 | Lemma 3 for lighneal 47573. (Contributed by AV, 11-Aug-2021.) |
| ⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
| Theorem | lighneallem4a 47570 | Lemma 1 for lighneallem4 47572. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘3) ∧ 𝑆 = (((𝐴↑𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆) | ||
| Theorem | lighneallem4b 47571* | Lemma 2 for lighneallem4 47572. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)) ∈ (ℤ≥‘2)) | ||
| Theorem | lighneallem4 47572 | Lemma 3 for lighneal 47573. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
| Theorem | lighneal 47573 | If a power of a prime 𝑃 (i.e. 𝑃↑𝑀) is of the form 2↑𝑁 − 1, then 𝑁 must be prime and 𝑀 must be 1. Generalization of mersenne 27188 (where 𝑀 = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ)) | ||
| Theorem | modexp2m1d 47574 | The square of an integer which is -1 modulo a number greater than 1 is 1 modulo the same modulus. (Contributed by AV, 5-Jul-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 1 < 𝐸) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (-1 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴↑2) mod 𝐸) = 1) | ||
| Theorem | proththdlem 47575 | Lemma for proththd 47576. (Contributed by AV, 4-Jul-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) ⇒ ⊢ (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ)) | ||
| Theorem | proththd 47576* | Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 16924), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) & ⊢ (𝜑 → 𝐾 < (2↑𝑁)) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ℙ) | ||
| Theorem | 5tcu2e40 47577 | 5 times the cube of 2 is 40. (Contributed by AV, 4-Jul-2020.) |
| ⊢ (5 · (2↑3)) = ;40 | ||
| Theorem | 3exp4mod41 47578 | 3 to the fourth power is -1 modulo 41. (Contributed by AV, 5-Jul-2020.) |
| ⊢ ((3↑4) mod ;41) = (-1 mod ;41) | ||
| Theorem | 41prothprmlem1 47579 | Lemma 1 for 41prothprm 47581. (Contributed by AV, 4-Jul-2020.) |
| ⊢ 𝑃 = ;41 ⇒ ⊢ ((𝑃 − 1) / 2) = ;20 | ||
| Theorem | 41prothprmlem2 47580 | Lemma 2 for 41prothprm 47581. (Contributed by AV, 5-Jul-2020.) |
| ⊢ 𝑃 = ;41 ⇒ ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) | ||
| Theorem | 41prothprm 47581 | 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
| ⊢ 𝑃 = ;41 ⇒ ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) | ||
| Theorem | quad1 47582* | A condition for a quadratic equation with complex coefficients to have (exactly) one complex solution. (Contributed by AV, 23-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)) | ||
| Theorem | requad01 47583* | A condition for a quadratic equation with real coefficients to have (at least) one real solution. (Contributed by AV, 23-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷)) | ||
| Theorem | requad1 47584* | A condition for a quadratic equation with real coefficients to have (exactly) one real solution. (Contributed by AV, 26-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)) | ||
| Theorem | requad2 47585* | A condition for a quadratic equation with real coefficients to have (exactly) two different real solutions. (Contributed by AV, 28-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥 ∈ 𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷)) | ||
Even and odd numbers can be characterized in many different ways. In the following, the definition of even and odd numbers is based on the fact that dividing an even number (resp. an odd number increased by 1) by 2 is an integer, see df-even 47588 and df-odd 47589. Alternate definitions resp. characterizations are provided in dfeven2 47611, dfeven3 47620, dfeven4 47600 and in dfodd2 47598, dfodd3 47612, dfodd4 47621, dfodd5 47622, dfodd6 47599. Each characterization can be useful (and used) in an appropriate context, e.g. dfodd6 47599 in opoeALTV 47645 and dfodd3 47612 in oddprmALTV 47649. Having a fixed definition for even and odd numbers, and alternate characterizations as theorems, advanced theorems about even and/or odd numbers can be expressed more explicitly, and the appropriate characterization can be chosen for their proof, which may become clearer and sometimes also shorter (see, for example, divgcdoddALTV 47644 and divgcdodd 16727). | ||
| Syntax | ceven 47586 | Extend the definition of a class to include the set of even numbers. |
| class Even | ||
| Syntax | codd 47587 | Extend the definition of a class to include the set of odd numbers. |
| class Odd | ||
| Definition | df-even 47588 | Define the set of even numbers. (Contributed by AV, 14-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | ||
| Definition | df-odd 47589 | Define the set of odd numbers. (Contributed by AV, 14-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} | ||
| Theorem | iseven 47590 | The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | ||
| Theorem | isodd 47591 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | ||
| Theorem | evenz 47592 | An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) | ||
| Theorem | oddz 47593 | An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) | ||
| Theorem | evendiv2z 47594 | The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) | ||
| Theorem | oddp1div2z 47595 | The result of dividing an odd number increased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ) | ||
| Theorem | oddm1div2z 47596 | The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ((𝑍 − 1) / 2) ∈ ℤ) | ||
| Theorem | isodd2 47597 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd number decreased by 1 and then divided by 2 is still an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 − 1) / 2) ∈ ℤ)) | ||
| Theorem | dfodd2 47598 | Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} | ||
| Theorem | dfodd6 47599* | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)} | ||
| Theorem | dfeven4 47600* | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |