Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expandan Structured version   Visualization version   GIF version

Theorem expandan 42660
Description: Expand conjunction to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
expandan.1 (𝜑𝜓)
expandan.2 (𝜒𝜃)
Assertion
Ref Expression
expandan ((𝜑𝜒) ↔ ¬ (𝜓 → ¬ 𝜃))

Proof of Theorem expandan
StepHypRef Expression
1 expandan.1 . . 3 (𝜑𝜓)
2 expandan.2 . . 3 (𝜒𝜃)
31, 2anbi12i 628 . 2 ((𝜑𝜒) ↔ (𝜓𝜃))
4 df-an 398 . 2 ((𝜓𝜃) ↔ ¬ (𝜓 → ¬ 𝜃))
53, 4bitri 275 1 ((𝜑𝜒) ↔ ¬ (𝜓 → ¬ 𝜃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  ismnuprim  42666  rr-grothprimbi  42667
  Copyright terms: Public domain W3C validator