| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > expandan | Structured version Visualization version GIF version | ||
| Description: Expand conjunction to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| expandan.1 | ⊢ (𝜑 ↔ 𝜓) |
| expandan.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| expandan | ⊢ ((𝜑 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expandan.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | expandan.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 4 | df-an 396 | . 2 ⊢ ((𝜓 ∧ 𝜃) ↔ ¬ (𝜓 → ¬ 𝜃)) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ismnuprim 44291 rr-grothprimbi 44292 |
| Copyright terms: Public domain | W3C validator |