| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rr-grothprimbi | Structured version Visualization version GIF version | ||
| Description: Express "every set is contained in a Grothendieck universe" using only primitives. The right side (without the outermost universal quantifier) is proven as rr-grothprim 44289. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| rr-grothprimbi | ⊢ (∀𝑥∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∀𝑥 ¬ ∀𝑦(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3054 | . . 3 ⊢ (∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∃𝑦(𝑦 ∈ Univ ∧ 𝑥 ∈ 𝑦)) | |
| 2 | ancom 460 | . . . . 5 ⊢ ((𝑦 ∈ Univ ∧ 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ Univ)) | |
| 3 | biid 261 | . . . . . 6 ⊢ (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦) | |
| 4 | grumnueq 44276 | . . . . . . . . 9 ⊢ Univ = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
| 5 | 4 | ismnu 44250 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑦 ∈ Univ ↔ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑓∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑦 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) |
| 6 | 5 | elv 3452 | . . . . . . 7 ⊢ (𝑦 ∈ Univ ↔ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑓∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑦 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
| 7 | ismnuprim 44283 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑓∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑦 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))))))) | |
| 8 | 6, 7 | bitri 275 | . . . . . 6 ⊢ (𝑦 ∈ Univ ↔ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))))))) |
| 9 | 3, 8 | expandan 44277 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ Univ) ↔ ¬ (𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))))) |
| 10 | 2, 9 | bitri 275 | . . . 4 ⊢ ((𝑦 ∈ Univ ∧ 𝑥 ∈ 𝑦) ↔ ¬ (𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))))) |
| 11 | 10 | expandexn 44278 | . . 3 ⊢ (∃𝑦(𝑦 ∈ Univ ∧ 𝑥 ∈ 𝑦) ↔ ¬ ∀𝑦(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))))) |
| 12 | 1, 11 | bitri 275 | . 2 ⊢ (∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ¬ ∀𝑦(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))))) |
| 13 | 12 | albii 1819 | 1 ⊢ (∀𝑥∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∀𝑥 ¬ ∀𝑦(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 Univcgru 10743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-tc 9690 df-r1 9717 df-rank 9718 df-card 9892 df-cf 9894 df-acn 9895 df-ac 10069 df-wina 10637 df-ina 10638 df-gru 10744 df-scott 44225 df-coll 44240 |
| This theorem is referenced by: rr-grothprim 44289 |
| Copyright terms: Public domain | W3C validator |