| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi12i | Structured version Visualization version GIF version | ||
| Description: Conjoin both sides of two equivalences. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | anbi2i 623 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜑 ∧ 𝜃)) |
| 3 | anbi12.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 2, 3 | bianbi 627 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Copyright terms: Public domain | W3C validator |