Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expandexn Structured version   Visualization version   GIF version

Theorem expandexn 41945
Description: Expand an existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypothesis
Ref Expression
expandexn.1 (𝜑 ↔ ¬ 𝜓)
Assertion
Ref Expression
expandexn (∃𝑥𝜑 ↔ ¬ ∀𝑥𝜓)

Proof of Theorem expandexn
StepHypRef Expression
1 expandexn.1 . . 3 (𝜑 ↔ ¬ 𝜓)
21exbii 1848 . 2 (∃𝑥𝜑 ↔ ∃𝑥 ¬ 𝜓)
3 exnal 1827 . 2 (∃𝑥 ¬ 𝜓 ↔ ¬ ∀𝑥𝜓)
42, 3bitri 275 1 (∃𝑥𝜑 ↔ ¬ ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 206  df-ex 1780
This theorem is referenced by:  rr-grothprimbi  41951
  Copyright terms: Public domain W3C validator