Proof of Theorem ismnuprim
Step | Hyp | Ref
| Expression |
1 | | 19.28v 1999 |
. . 3
⊢
(∀𝑓(𝒫
𝑧 ⊆ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
2 | | r19.42v 3263 |
. . . . 5
⊢
(∃𝑤 ∈
𝑈 (𝒫 𝑧 ⊆ 𝑈 ∧ (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ (𝒫 𝑧 ⊆ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
3 | | 19.26 1878 |
. . . . . . . 8
⊢
(∀𝑣((𝑣 ⊆ 𝑧 → (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑤)) ∧ ∀𝑖 ∈ 𝑧 ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ (∀𝑣(𝑣 ⊆ 𝑧 → (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑤)) ∧ ∀𝑣∀𝑖 ∈ 𝑧 ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
4 | | 19.26 1878 |
. . . . . . . . . . 11
⊢
(∀𝑣((𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑈) ∧ (𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ↔ (∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑈) ∧ ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) |
5 | | jcab 521 |
. . . . . . . . . . . 12
⊢ ((𝑣 ⊆ 𝑧 → (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑤)) ↔ ((𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑈) ∧ (𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) |
6 | 5 | albii 1827 |
. . . . . . . . . . 11
⊢
(∀𝑣(𝑣 ⊆ 𝑧 → (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑤)) ↔ ∀𝑣((𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑈) ∧ (𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) |
7 | | pwss 4538 |
. . . . . . . . . . . 12
⊢
(𝒫 𝑧 ⊆
𝑈 ↔ ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑈)) |
8 | | pwss 4538 |
. . . . . . . . . . . 12
⊢
(𝒫 𝑧 ⊆
𝑤 ↔ ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) |
9 | 7, 8 | anbi12i 630 |
. . . . . . . . . . 11
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝒫
𝑧 ⊆ 𝑤) ↔ (∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑈) ∧ ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) |
10 | 4, 6, 9 | 3bitr4i 306 |
. . . . . . . . . 10
⊢
(∀𝑣(𝑣 ⊆ 𝑧 → (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑤)) ↔ (𝒫 𝑧 ⊆ 𝑈 ∧ 𝒫 𝑧 ⊆ 𝑤)) |
11 | | ralcom4 3157 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
𝑧 ∀𝑣((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ ∀𝑣∀𝑖 ∈ 𝑧 ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
12 | | 19.23v 1950 |
. . . . . . . . . . . . 13
⊢
(∀𝑣((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
13 | | 3anass 1097 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ (𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
14 | 13 | exbii 1855 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ ∃𝑣(𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
15 | | df-rex 3067 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑣 ∈
𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ ∃𝑣(𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
16 | 14, 15 | bitr4i 281 |
. . . . . . . . . . . . . 14
⊢
(∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ ∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
17 | 16 | imbi1i 353 |
. . . . . . . . . . . . 13
⊢
((∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
18 | 12, 17 | bitri 278 |
. . . . . . . . . . . 12
⊢
(∀𝑣((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
19 | 18 | ralbii 3088 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
𝑧 ∀𝑣((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
20 | 11, 19 | bitr3i 280 |
. . . . . . . . . 10
⊢
(∀𝑣∀𝑖 ∈ 𝑧 ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
21 | 10, 20 | anbi12i 630 |
. . . . . . . . 9
⊢
((∀𝑣(𝑣 ⊆ 𝑧 → (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑤)) ∧ ∀𝑣∀𝑖 ∈ 𝑧 ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ ((𝒫 𝑧 ⊆ 𝑈 ∧ 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
22 | | anass 472 |
. . . . . . . . 9
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧ 𝒫
𝑧 ⊆ 𝑤) ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ (𝒫 𝑧 ⊆ 𝑈 ∧ (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
23 | 21, 22 | bitri 278 |
. . . . . . . 8
⊢
((∀𝑣(𝑣 ⊆ 𝑧 → (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑤)) ∧ ∀𝑣∀𝑖 ∈ 𝑧 ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ (𝒫 𝑧 ⊆ 𝑈 ∧ (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
24 | 3, 23 | bitri 278 |
. . . . . . 7
⊢
(∀𝑣((𝑣 ⊆ 𝑧 → (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑤)) ∧ ∀𝑖 ∈ 𝑧 ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ (𝒫 𝑧 ⊆ 𝑈 ∧ (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
25 | | dfss2 3886 |
. . . . . . . . . 10
⊢ (𝑣 ⊆ 𝑧 ↔ ∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧)) |
26 | | df-an 400 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑤) ↔ ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤)) |
27 | 25, 26 | imbi12i 354 |
. . . . . . . . 9
⊢ ((𝑣 ⊆ 𝑧 → (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑤)) ↔ (∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤))) |
28 | | 3impexp 1360 |
. . . . . . . . . . 11
⊢ (((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
29 | | biid 264 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ 𝑢 ↔ 𝑖 ∈ 𝑢) |
30 | | expanduniss 41584 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑢
⊆ 𝑤 ↔
∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))) |
31 | 29, 30 | expandan 41579 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ ¬ (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))) |
32 | 31 | expandrexn 41582 |
. . . . . . . . . . . . . 14
⊢
(∃𝑢 ∈
𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))) |
33 | 32 | imbi2i 339 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ 𝑓 → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))) |
34 | 33 | imbi2i 339 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))) |
35 | 34 | imbi2i 339 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))) |
36 | 28, 35 | bitri 278 |
. . . . . . . . . 10
⊢ (((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))) |
37 | 36 | expandral 41581 |
. . . . . . . . 9
⊢
(∀𝑖 ∈
𝑧 ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))) |
38 | 27, 37 | expandan 41579 |
. . . . . . . 8
⊢ (((𝑣 ⊆ 𝑧 → (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑤)) ∧ ∀𝑖 ∈ 𝑧 ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))))) |
39 | 38 | albii 1827 |
. . . . . . 7
⊢
(∀𝑣((𝑣 ⊆ 𝑧 → (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑤)) ∧ ∀𝑖 ∈ 𝑧 ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))))) |
40 | 24, 39 | bitr3i 280 |
. . . . . 6
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ (𝒫
𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))))) |
41 | 40 | expandrex 41583 |
. . . . 5
⊢
(∃𝑤 ∈
𝑈 (𝒫 𝑧 ⊆ 𝑈 ∧ (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ ¬ ∀𝑤(𝑤 ∈ 𝑈 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))) |
42 | 2, 41 | bitr3i 280 |
. . . 4
⊢
((𝒫 𝑧
⊆ 𝑈 ∧
∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ ¬ ∀𝑤(𝑤 ∈ 𝑈 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))) |
43 | 42 | albii 1827 |
. . 3
⊢
(∀𝑓(𝒫
𝑧 ⊆ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑈 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))) |
44 | 1, 43 | bitr3i 280 |
. 2
⊢
((𝒫 𝑧
⊆ 𝑈 ∧
∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑈 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))) |
45 | 44 | expandral 41581 |
1
⊢
(∀𝑧 ∈
𝑈 (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ ∀𝑧(𝑧 ∈ 𝑈 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑈 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))))))) |