| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > expcomdg | Structured version Visualization version GIF version | ||
| Description: Biconditional form of expcomd 416. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| expcomdg | ⊢ ((𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ↔ (𝜑 → (𝜒 → (𝜓 → 𝜃)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomst 464 | . . 3 ⊢ (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜒 ∧ 𝜓) → 𝜃)) | |
| 2 | impexp 450 | . . 3 ⊢ (((𝜒 ∧ 𝜓) → 𝜃) ↔ (𝜒 → (𝜓 → 𝜃))) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (((𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜒 → (𝜓 → 𝜃))) |
| 4 | 3 | imbi2i 336 | 1 ⊢ ((𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ↔ (𝜑 → (𝜒 → (𝜓 → 𝜃)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |