Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > expcomdg | Structured version Visualization version GIF version |
Description: Biconditional form of expcomd 418. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
expcomdg | ⊢ ((𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ↔ (𝜑 → (𝜒 → (𝜓 → 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomst 466 | . . 3 ⊢ (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜒 ∧ 𝜓) → 𝜃)) | |
2 | impexp 452 | . . 3 ⊢ (((𝜒 ∧ 𝜓) → 𝜃) ↔ (𝜒 → (𝜓 → 𝜃))) | |
3 | 1, 2 | bitri 275 | . 2 ⊢ (((𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜒 → (𝜓 → 𝜃))) |
4 | 3 | imbi2i 336 | 1 ⊢ ((𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ↔ (𝜑 → (𝜒 → (𝜓 → 𝜃)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |