Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expcomd | Structured version Visualization version GIF version |
Description: Deduction form of expcom 413. (Contributed by Alan Sare, 22-Jul-2012.) |
Ref | Expression |
---|---|
expcomd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expcomd | ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcomd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com23 86 | 1 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
Copyright terms: Public domain | W3C validator |