Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > olci | Structured version Visualization version GIF version |
Description: Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
Ref | Expression |
---|---|
orci.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
olci | ⊢ (𝜓 ∨ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orci.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (¬ 𝜓 → 𝜑) |
3 | 2 | orri 858 | 1 ⊢ (𝜓 ∨ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: falortru 1578 opthhausdorff 5425 sucidg 6329 kmlem2 9838 sornom 9964 leid 11001 pnf0xnn0 12242 xrleid 12814 xmul01 12930 bcn1 13955 odd2np1lem 15977 lcm0val 16227 lcmfunsnlem2lem1 16271 lcmfunsnlem2 16273 coprmprod 16294 coprmproddvdslem 16295 prmrec 16551 smndex2dnrinv 18469 sratsetOLD 20366 sradsOLD 20369 m2detleib 21688 zclmncvs 24217 itg0 24849 itgz 24850 coemullem 25316 ftalem5 26131 chp1 26221 prmorcht 26232 pclogsum 26268 logexprlim 26278 bpos1 26336 addsqnreup 26496 pntpbnd1 26639 axlowdimlem16 27228 usgrexmpldifpr 27528 cusgrsizeindb1 27720 pthdlem2 28037 ex-or 28686 plymulx0 32426 signstfvn 32448 bj-0eltag 35095 bj-inftyexpidisj 35308 mblfinlem2 35742 volsupnfl 35749 12gcd5e1 39939 ifpdfor 40970 ifpim1 40974 ifpnot 40975 ifpid2 40976 ifpim2 40977 ifpim1g 41006 ifpbi1b 41008 icccncfext 43318 fourierdlem103 43640 fourierdlem104 43641 etransclem24 43689 etransclem35 43700 abnotataxb 44298 dandysum2p2e4 44380 paireqne 44851 sbgoldbo 45127 zlmodzxzldeplem 45727 line2x 45988 aacllem 46391 |
Copyright terms: Public domain | W3C validator |