Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > olci | Structured version Visualization version GIF version |
Description: Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
Ref | Expression |
---|---|
orci.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
olci | ⊢ (𝜓 ∨ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orci.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (¬ 𝜓 → 𝜑) |
3 | 2 | orri 859 | 1 ⊢ (𝜓 ∨ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: falortru 1578 opthhausdorff 5431 sucidg 6344 kmlem2 9907 sornom 10033 leid 11071 pnf0xnn0 12312 xrleid 12885 xmul01 13001 bcn1 14027 odd2np1lem 16049 lcm0val 16299 lcmfunsnlem2lem1 16343 lcmfunsnlem2 16345 coprmprod 16366 coprmproddvdslem 16367 prmrec 16623 smndex2dnrinv 18554 sratsetOLD 20453 sradsOLD 20456 m2detleib 21780 zclmncvs 24312 itg0 24944 itgz 24945 coemullem 25411 ftalem5 26226 chp1 26316 prmorcht 26327 pclogsum 26363 logexprlim 26373 bpos1 26431 addsqnreup 26591 pntpbnd1 26734 axlowdimlem16 27325 usgrexmpldifpr 27625 cusgrsizeindb1 27817 pthdlem2 28136 ex-or 28785 plymulx0 32526 signstfvn 32548 bj-0eltag 35168 bj-inftyexpidisj 35381 mblfinlem2 35815 volsupnfl 35822 12gcd5e1 40011 ifpdfor 41072 ifpim1 41076 ifpnot 41077 ifpid2 41078 ifpim2 41079 ifpim1g 41108 ifpbi1b 41110 icccncfext 43428 fourierdlem103 43750 fourierdlem104 43751 etransclem24 43799 etransclem35 43810 abnotataxb 44411 dandysum2p2e4 44493 paireqne 44963 sbgoldbo 45239 zlmodzxzldeplem 45839 line2x 46100 aacllem 46505 |
Copyright terms: Public domain | W3C validator |