![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > olci | Structured version Visualization version GIF version |
Description: Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
Ref | Expression |
---|---|
orci.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
olci | ⊢ (𝜓 ∨ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orci.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (¬ 𝜓 → 𝜑) |
3 | 2 | orri 860 | 1 ⊢ (𝜓 ∨ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 |
This theorem is referenced by: falortru 1580 opthhausdorff 5516 sucidg 6442 kmlem2 10142 sornom 10268 leid 11306 pnf0xnn0 12547 xrleid 13126 xmul01 13242 bcn1 14269 odd2np1lem 16279 lcm0val 16527 lcmfunsnlem2lem1 16571 lcmfunsnlem2 16573 coprmprod 16594 coprmproddvdslem 16595 prmrec 16851 smndex2dnrinv 18792 sratsetOLD 20796 sradsOLD 20799 m2detleib 22124 zclmncvs 24656 itg0 25288 itgz 25289 coemullem 25755 ftalem5 26570 chp1 26660 prmorcht 26671 pclogsum 26707 logexprlim 26717 bpos1 26775 addsqnreup 26935 pntpbnd1 27078 axlowdimlem16 28204 usgrexmpldifpr 28504 cusgrsizeindb1 28696 pthdlem2 29014 ex-or 29663 plymulx0 33546 signstfvn 33568 bj-0eltag 35847 bj-inftyexpidisj 36079 mblfinlem2 36514 volsupnfl 36521 12gcd5e1 40856 ifpdfor 42201 ifpim1 42205 ifpnot 42206 ifpid2 42207 ifpim2 42208 ifpim1g 42237 ifpbi1b 42239 icccncfext 44589 fourierdlem103 44911 fourierdlem104 44912 etransclem24 44960 etransclem35 44971 abnotataxb 45612 dandysum2p2e4 45694 paireqne 46165 sbgoldbo 46441 zlmodzxzldeplem 47132 line2x 47393 aacllem 47801 |
Copyright terms: Public domain | W3C validator |