![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > olci | Structured version Visualization version GIF version |
Description: Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
Ref | Expression |
---|---|
orci.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
olci | ⊢ (𝜓 ∨ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orci.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (¬ 𝜓 → 𝜑) |
3 | 2 | orri 861 | 1 ⊢ (𝜓 ∨ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: falortru 1581 opthhausdorff 5518 sucidg 6446 kmlem2 10146 sornom 10272 leid 11310 pnf0xnn0 12551 xrleid 13130 xmul01 13246 bcn1 14273 odd2np1lem 16283 lcm0val 16531 lcmfunsnlem2lem1 16575 lcmfunsnlem2 16577 coprmprod 16598 coprmproddvdslem 16599 prmrec 16855 smndex2dnrinv 18796 sratsetOLD 20804 sradsOLD 20807 m2detleib 22133 zclmncvs 24665 itg0 25297 itgz 25298 coemullem 25764 ftalem5 26581 chp1 26671 prmorcht 26682 pclogsum 26718 logexprlim 26728 bpos1 26786 addsqnreup 26946 pntpbnd1 27089 axlowdimlem16 28215 usgrexmpldifpr 28515 cusgrsizeindb1 28707 pthdlem2 29025 ex-or 29674 plymulx0 33558 signstfvn 33580 bj-0eltag 35859 bj-inftyexpidisj 36091 mblfinlem2 36526 volsupnfl 36533 12gcd5e1 40868 ifpdfor 42216 ifpim1 42220 ifpnot 42221 ifpid2 42222 ifpim2 42223 ifpim1g 42252 ifpbi1b 42254 icccncfext 44603 fourierdlem103 44925 fourierdlem104 44926 etransclem24 44974 etransclem35 44985 abnotataxb 45626 dandysum2p2e4 45708 paireqne 46179 sbgoldbo 46455 zlmodzxzldeplem 47179 line2x 47440 aacllem 47848 |
Copyright terms: Public domain | W3C validator |