|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fesapo | Structured version Visualization version GIF version | ||
| Description: "Fesapo", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜓 is 𝜒, and 𝜓 exist, therefore some 𝜒 is not 𝜑. In Aristotelian notation, EAO-4: PeM and MaS therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) | 
| Ref | Expression | 
|---|---|
| fesapo.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | 
| fesapo.min | ⊢ ∀𝑥(𝜓 → 𝜒) | 
| fesapo.e | ⊢ ∃𝑥𝜓 | 
| Ref | Expression | 
|---|---|
| fesapo | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fesapo.maj | . . 3 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
| 2 | con2 135 | . . . 4 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
| 3 | 2 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) → ∀𝑥(𝜓 → ¬ 𝜑)) | 
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ ∀𝑥(𝜓 → ¬ 𝜑) | 
| 5 | fesapo.min | . 2 ⊢ ∀𝑥(𝜓 → 𝜒) | |
| 6 | fesapo.e | . 2 ⊢ ∃𝑥𝜓 | |
| 7 | 4, 5, 6 | felapton 2686 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |