Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fesapo | Structured version Visualization version GIF version |
Description: "Fesapo", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜓 is 𝜒, and 𝜓 exist, therefore some 𝜒 is not 𝜑. In Aristotelian notation, EAO-4: PeM and MaS therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
Ref | Expression |
---|---|
fesapo.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
fesapo.min | ⊢ ∀𝑥(𝜓 → 𝜒) |
fesapo.e | ⊢ ∃𝑥𝜓 |
Ref | Expression |
---|---|
fesapo | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fesapo.maj | . . 3 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
2 | con2 137 | . . . 4 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
3 | 2 | alimi 1819 | . . 3 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) → ∀𝑥(𝜓 → ¬ 𝜑)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ ∀𝑥(𝜓 → ¬ 𝜑) |
5 | fesapo.min | . 2 ⊢ ∀𝑥(𝜓 → 𝜒) | |
6 | fesapo.e | . 2 ⊢ ∃𝑥𝜓 | |
7 | 4, 5, 6 | felapton 2686 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∀wal 1541 ∃wex 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |