MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bamalip Structured version   Visualization version   GIF version

Theorem bamalip 2693
Description: "Bamalip", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜓 is 𝜒, and 𝜑 exist, therefore some 𝜒 is 𝜑. In Aristotelian notation, AAI-4: PaM and MaS therefore SiP. Very similar to barbari 2670. (Contributed by David A. Wheeler, 28-Aug-2016.) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
Hypotheses
Ref Expression
bamalip.maj 𝑥(𝜑𝜓)
bamalip.min 𝑥(𝜓𝜒)
bamalip.e 𝑥𝜑
Assertion
Ref Expression
bamalip 𝑥(𝜒𝜑)

Proof of Theorem bamalip
StepHypRef Expression
1 bamalip.min . . 3 𝑥(𝜓𝜒)
2 bamalip.maj . . 3 𝑥(𝜑𝜓)
3 bamalip.e . . 3 𝑥𝜑
41, 2, 3barbari 2670 . 2 𝑥(𝜑𝜒)
5 exancom 1865 . 2 (∃𝑥(𝜑𝜒) ↔ ∃𝑥(𝜒𝜑))
64, 5mpbi 229 1 𝑥(𝜒𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator