Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bamalip Structured version   Visualization version   GIF version

Theorem bamalip 2735
 Description: "Bamalip", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜓 is 𝜒, and 𝜑 exist, therefore some 𝜒 is 𝜑. (In Aristotelian notation, AAI-4: PaM and MaS therefore SiP.) Like barbari 2716. (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
bamalip.maj 𝑥(𝜑𝜓)
bamalip.min 𝑥(𝜓𝜒)
bamalip.e 𝑥𝜑
Assertion
Ref Expression
bamalip 𝑥(𝜒𝜑)

Proof of Theorem bamalip
StepHypRef Expression
1 bamalip.e . 2 𝑥𝜑
2 bamalip.maj . . . . 5 𝑥(𝜑𝜓)
32spi 2208 . . . 4 (𝜑𝜓)
4 bamalip.min . . . . 5 𝑥(𝜓𝜒)
54spi 2208 . . . 4 (𝜓𝜒)
63, 5syl 17 . . 3 (𝜑𝜒)
76ancri 539 . 2 (𝜑 → (𝜒𝜑))
81, 7eximii 1912 1 𝑥(𝜒𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382  ∀wal 1629  ∃wex 1852 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-12 2203 This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1853 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator