Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege24 Structured version   Visualization version   GIF version

Theorem frege24 41312
Description: Closed form for a1d 25. Deduction introducing an embedded antecedent. Identical to rp-frege24 41294 which was proved without relying on ax-frege8 41306. Proposition 24 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege24 ((𝜑𝜓) → (𝜑 → (𝜒𝜓)))

Proof of Theorem frege24
StepHypRef Expression
1 ax-frege1 41287 . 2 ((𝜑𝜓) → (𝜒 → (𝜑𝜓)))
2 frege12 41310 . 2 (((𝜑𝜓) → (𝜒 → (𝜑𝜓))) → ((𝜑𝜓) → (𝜑 → (𝜒𝜓))))
31, 2ax-mp 5 1 ((𝜑𝜓) → (𝜑 → (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306
This theorem is referenced by:  frege25  41314  frege63a  41378  frege63b  41405  frege63c  41423
  Copyright terms: Public domain W3C validator