![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege63c | Structured version Visualization version GIF version |
Description: Analogue of frege63b 39041. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege63c | ⊢ ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege59c.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
2 | 1 | frege62c 39058 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒)) |
3 | frege24 38948 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒)))) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1654 ∈ wcel 2164 [wsbc 3662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-12 2220 ax-13 2389 ax-ext 2803 ax-frege1 38923 ax-frege2 38924 ax-frege8 38942 ax-frege58b 39034 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-v 3416 df-sbc 3663 |
This theorem is referenced by: frege91 39087 |
Copyright terms: Public domain | W3C validator |