![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege63c | Structured version Visualization version GIF version |
Description: Analogue of frege63b 43124. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege63c | ⊢ ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege59c.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
2 | 1 | frege62c 43141 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒)) |
3 | frege24 43031 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒)))) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2105 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-frege1 43006 ax-frege2 43007 ax-frege8 43025 ax-frege58b 43117 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-sbc 3778 |
This theorem is referenced by: frege91 43170 |
Copyright terms: Public domain | W3C validator |