Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege63c | Structured version Visualization version GIF version |
Description: Analogue of frege63b 41193. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege63c | ⊢ ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege59c.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
2 | 1 | frege62c 41210 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒)) |
3 | frege24 41100 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒)))) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 ∈ wcel 2110 [wsbc 3694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-frege1 41075 ax-frege2 41076 ax-frege8 41094 ax-frege58b 41186 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-sbc 3695 |
This theorem is referenced by: frege91 41239 |
Copyright terms: Public domain | W3C validator |