![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege63a | Structured version Visualization version GIF version |
Description: Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege63a | ⊢ (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege62a 42240 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜃) → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏))) | |
2 | frege24 42175 | . 2 ⊢ ((if-(𝜑, 𝜓, 𝜃) → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏))) → (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏))))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 if-wif 1062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 42150 ax-frege2 42151 ax-frege8 42169 ax-frege58a 42235 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ifp 1063 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |