![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege63b | Structured version Visualization version GIF version |
Description: Lemma for frege91 43263. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege63b | ⊢ ([𝑦 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝑦 / 𝑥]𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege62b 43216 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜒) → [𝑦 / 𝑥]𝜒)) | |
2 | frege24 43124 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜒) → [𝑦 / 𝑥]𝜒)) → ([𝑦 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝑦 / 𝑥]𝜒)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝑦 / 𝑥]𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 [wsb 2059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-12 2163 ax-frege1 43099 ax-frege2 43100 ax-frege8 43118 ax-frege58b 43210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ex 1774 df-nf 1778 df-sb 2060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |