Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege63b Structured version   Visualization version   GIF version

Theorem frege63b 43217
Description: Lemma for frege91 43263. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege63b ([𝑦 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑𝜒) → [𝑦 / 𝑥]𝜒)))

Proof of Theorem frege63b
StepHypRef Expression
1 frege62b 43216 . 2 ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑𝜒) → [𝑦 / 𝑥]𝜒))
2 frege24 43124 . 2 (([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑𝜒) → [𝑦 / 𝑥]𝜒)) → ([𝑦 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑𝜒) → [𝑦 / 𝑥]𝜒))))
31, 2ax-mp 5 1 ([𝑦 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑𝜒) → [𝑦 / 𝑥]𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531  [wsb 2059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-12 2163  ax-frege1 43099  ax-frege2 43100  ax-frege8 43118  ax-frege58b 43210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1774  df-nf 1778  df-sb 2060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator