Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege59c Structured version   Visualization version   GIF version

Theorem frege59c 43249
Description: A kind of Aristotelian inference. Proposition 59 of [Frege1879] p. 51.

Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 43140 incorrectly referenced where frege30 43159 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)

Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege59c ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑𝜓)))

Proof of Theorem frege59c
StepHypRef Expression
1 frege59c.a . . . 4 𝐴𝐵
21frege58c 43248 . . 3 (∀𝑥(𝜑𝜓) → [𝐴 / 𝑥](𝜑𝜓))
3 sbcim1 3828 . . 3 ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
42, 3syl 17 . 2 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
5 frege30 43159 . 2 ((∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)) → ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑𝜓))))
64, 5ax-mp 5 1 ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1531  wcel 2098  [wsbc 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-frege1 43117  ax-frege2 43118  ax-frege8 43136  ax-frege28 43157  ax-frege58b 43228
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-sbc 3773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator