| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege59c | Structured version Visualization version GIF version | ||
| Description: A kind of Aristotelian
inference. Proposition 59 of [Frege1879] p.
51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 43804 incorrectly referenced where frege30 43823 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| frege59c | ⊢ ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege59c.a | . . . 4 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | 1 | frege58c 43912 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → [𝐴 / 𝑥](𝜑 → 𝜓)) |
| 3 | sbcim1 3824 | . . 3 ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) |
| 5 | frege30 43823 | . 2 ⊢ ((∀𝑥(𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) → ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓)))) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∈ wcel 2109 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-frege1 43781 ax-frege2 43782 ax-frege8 43800 ax-frege28 43821 ax-frege58b 43892 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-sbc 3771 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |