Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege59c Structured version   Visualization version   GIF version

Theorem frege59c 39057
Description: A kind of Aristotelian inference. Proposition 59 of [Frege1879] p. 51.

Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 38948 incorrectly referenced where frege30 38967 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)

Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege59c ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑𝜓)))

Proof of Theorem frege59c
StepHypRef Expression
1 frege59c.a . . . 4 𝐴𝐵
21frege58c 39056 . . 3 (∀𝑥(𝜑𝜓) → [𝐴 / 𝑥](𝜑𝜓))
3 sbcim1 3710 . . 3 ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
42, 3syl 17 . 2 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
5 frege30 38967 . 2 ((∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)) → ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑𝜓))))
64, 5ax-mp 5 1 ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1656  wcel 2166  [wsbc 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-12 2222  ax-13 2391  ax-ext 2804  ax-frege1 38925  ax-frege2 38926  ax-frege8 38944  ax-frege28 38965  ax-frege58b 39036
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2813  df-cleq 2819  df-clel 2822  df-v 3417  df-sbc 3664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator