Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege59c Structured version   Visualization version   GIF version

Theorem frege59c 41392
Description: A kind of Aristotelian inference. Proposition 59 of [Frege1879] p. 51.

Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 41283 incorrectly referenced where frege30 41302 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)

Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege59c ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑𝜓)))

Proof of Theorem frege59c
StepHypRef Expression
1 frege59c.a . . . 4 𝐴𝐵
21frege58c 41391 . . 3 (∀𝑥(𝜑𝜓) → [𝐴 / 𝑥](𝜑𝜓))
3 sbcim1 3768 . . 3 ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
42, 3syl 17 . 2 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
5 frege30 41302 . 2 ((∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)) → ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑𝜓))))
64, 5ax-mp 5 1 ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1541  wcel 2112  [wsbc 3712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-frege1 41260  ax-frege2 41261  ax-frege8 41279  ax-frege28 41300  ax-frege58b 41371
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-v 3425  df-sbc 3713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator