|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege59a | Structured version Visualization version GIF version | ||
| Description: A kind of Aristotelian
inference.  Namely Felapton or Fesapo.  Proposition
     59 of [Frege1879] p. 51. Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 43831 incorrectly referenced where frege30 43850 is in the original. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege59a | ⊢ (if-(𝜑, 𝜓, 𝜃) → (¬ if-(𝜑, 𝜒, 𝜏) → ¬ ((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frege58acor 43894 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) | |
| 2 | frege30 43850 | . 2 ⊢ ((((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) → (if-(𝜑, 𝜓, 𝜃) → (¬ if-(𝜑, 𝜒, 𝜏) → ¬ ((𝜓 → 𝜒) ∧ (𝜃 → 𝜏))))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (if-(𝜑, 𝜓, 𝜃) → (¬ if-(𝜑, 𝜒, 𝜏) → ¬ ((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 if-wif 1062 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 43808 ax-frege2 43809 ax-frege8 43827 ax-frege28 43848 ax-frege58a 43893 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |