Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege37 Structured version   Visualization version   GIF version

Theorem frege37 42200
Description: If 𝜒 is a necessary consequence of the occurrence of 𝜓 or 𝜑, then 𝜒 is a necessary consequence of 𝜑 alone. Similar to a closed form of orcs 874. Proposition 37 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege37 (((¬ 𝜑𝜓) → 𝜒) → (𝜑𝜒))

Proof of Theorem frege37
StepHypRef Expression
1 frege36 42199 . 2 (𝜑 → (¬ 𝜑𝜓))
2 frege9 42172 . 2 ((𝜑 → (¬ 𝜑𝜓)) → (((¬ 𝜑𝜓) → 𝜒) → (𝜑𝜒)))
31, 2ax-mp 5 1 (((¬ 𝜑𝜓) → 𝜒) → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 42150  ax-frege2 42151  ax-frege8 42169  ax-frege28 42190  ax-frege31 42194
This theorem is referenced by:  frege106  42329
  Copyright terms: Public domain W3C validator