Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege106 Structured version   Visualization version   GIF version

Theorem frege106 41558
Description: Whatever follows 𝑋 in the 𝑅-sequence belongs to the 𝑅 -sequence beginning with 𝑋. Proposition 106 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege103.z 𝑍𝑉
Assertion
Ref Expression
frege106 (𝑋(t+‘𝑅)𝑍𝑋((t+‘𝑅) ∪ I )𝑍)

Proof of Theorem frege106
StepHypRef Expression
1 frege103.z . . 3 𝑍𝑉
21frege105 41557 . 2 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍)
3 frege37 41429 . 2 (((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) → (𝑋(t+‘𝑅)𝑍𝑋((t+‘𝑅) ∪ I )𝑍))
42, 3ax-mp 5 1 (𝑋(t+‘𝑅)𝑍𝑋((t+‘𝑅) ∪ I )𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  cun 3884   class class class wbr 5073   I cid 5483  cfv 6426  t+ctcl 14706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-frege1 41379  ax-frege2 41380  ax-frege8 41398  ax-frege28 41419  ax-frege31 41423  ax-frege52a 41446
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5074  df-opab 5136  df-id 5484  df-xp 5590  df-rel 5591
This theorem is referenced by:  frege107  41559
  Copyright terms: Public domain W3C validator