Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege106 Structured version   Visualization version   GIF version

Theorem frege106 42315
Description: Whatever follows 𝑋 in the 𝑅-sequence belongs to the 𝑅 -sequence beginning with 𝑋. Proposition 106 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege103.z 𝑍𝑉
Assertion
Ref Expression
frege106 (𝑋(t+‘𝑅)𝑍𝑋((t+‘𝑅) ∪ I )𝑍)

Proof of Theorem frege106
StepHypRef Expression
1 frege103.z . . 3 𝑍𝑉
21frege105 42314 . 2 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍)
3 frege37 42186 . 2 (((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) → (𝑋(t+‘𝑅)𝑍𝑋((t+‘𝑅) ∪ I )𝑍))
42, 3ax-mp 5 1 (𝑋(t+‘𝑅)𝑍𝑋((t+‘𝑅) ∪ I )𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2107  cun 3913   class class class wbr 5110   I cid 5535  cfv 6501  t+ctcl 14877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-frege1 42136  ax-frege2 42137  ax-frege8 42155  ax-frege28 42176  ax-frege31 42180  ax-frege52a 42203
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645
This theorem is referenced by:  frege107  42316
  Copyright terms: Public domain W3C validator