MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orcs Structured version   Visualization version   GIF version

Theorem orcs 871
Description: Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. (Contributed by NM, 21-Jun-1994.)
Hypothesis
Ref Expression
orcs.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
orcs (𝜑𝜒)

Proof of Theorem orcs
StepHypRef Expression
1 orc 863 . 2 (𝜑 → (𝜑𝜓))
2 orcs.1 . 2 ((𝜑𝜓) → 𝜒)
31, 2syl 17 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  olcs  872  ifor  4510  tppreqb  4735  frxp  7938  mndifsplit  21693  maducoeval2  21697  leibpilem2  25996  leibpi  25997  3o1cs  30713  3o2cs  30714  poimirlem31  35735  tsan2  36227  frege114d  41255  ntrneiel2  41585  nnfoctbdjlem  43883
  Copyright terms: Public domain W3C validator