| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcs | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. (Contributed by NM, 21-Jun-1994.) |
| Ref | Expression |
|---|---|
| orcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| orcs | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 2 | orcs.1 | . 2 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: olcs 876 norasslem2 1535 ifor 4555 tppreqb 4781 frxp 8125 mndifsplit 22574 maducoeval2 22578 leibpilem2 26903 leibpi 26904 3o1cs 32442 3o2cs 32443 elrgspnlem2 33238 poimirlem31 37675 tsan2 38166 frege114d 43782 ntrneiel2 44110 nnfoctbdjlem 46484 homf0 48984 |
| Copyright terms: Public domain | W3C validator |