| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcs | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. (Contributed by NM, 21-Jun-1994.) |
| Ref | Expression |
|---|---|
| orcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| orcs | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 2 | orcs.1 | . 2 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: olcs 876 norasslem2 1535 ifor 4533 tppreqb 4759 frxp 8066 mndifsplit 22539 maducoeval2 22543 leibpilem2 26867 leibpi 26868 3o1cs 32423 3o2cs 32424 elrgspnlem2 33193 poimirlem31 37630 tsan2 38121 frege114d 43731 ntrneiel2 44059 nnfoctbdjlem 46437 homf0 48995 |
| Copyright terms: Public domain | W3C validator |