MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orcs Structured version   Visualization version   GIF version

Theorem orcs 872
Description: Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. (Contributed by NM, 21-Jun-1994.)
Hypothesis
Ref Expression
orcs.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
orcs (𝜑𝜒)

Proof of Theorem orcs
StepHypRef Expression
1 orc 864 . 2 (𝜑 → (𝜑𝜓))
2 orcs.1 . 2 ((𝜑𝜓) → 𝜒)
31, 2syl 17 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  olcs  873  ifor  4513  tppreqb  4738  frxp  7967  mndifsplit  21785  maducoeval2  21789  leibpilem2  26091  leibpi  26092  3o1cs  30812  3o2cs  30813  poimirlem31  35808  tsan2  36300  frege114d  41366  ntrneiel2  41696  nnfoctbdjlem  43993
  Copyright terms: Public domain W3C validator