MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orcs Structured version   Visualization version   GIF version

Theorem orcs 875
Description: Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. (Contributed by NM, 21-Jun-1994.)
Hypothesis
Ref Expression
orcs.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
orcs (𝜑𝜒)

Proof of Theorem orcs
StepHypRef Expression
1 orc 867 . 2 (𝜑 → (𝜑𝜓))
2 orcs.1 . 2 ((𝜑𝜓) → 𝜒)
31, 2syl 17 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  olcs  876  norasslem2  1535  ifor  4555  tppreqb  4781  frxp  8125  mndifsplit  22574  maducoeval2  22578  leibpilem2  26903  leibpi  26904  3o1cs  32442  3o2cs  32443  elrgspnlem2  33238  poimirlem31  37675  tsan2  38166  frege114d  43782  ntrneiel2  44110  nnfoctbdjlem  46484  homf0  48984
  Copyright terms: Public domain W3C validator