| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcs | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. (Contributed by NM, 21-Jun-1994.) |
| Ref | Expression |
|---|---|
| orcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| orcs | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 2 | orcs.1 | . 2 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: olcs 876 norasslem2 1535 ifor 4543 tppreqb 4769 frxp 8105 mndifsplit 22523 maducoeval2 22527 leibpilem2 26851 leibpi 26852 3o1cs 32390 3o2cs 32391 elrgspnlem2 33194 poimirlem31 37645 tsan2 38136 frege114d 43747 ntrneiel2 44075 nnfoctbdjlem 46453 homf0 48998 |
| Copyright terms: Public domain | W3C validator |