| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcs | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. (Contributed by NM, 21-Jun-1994.) |
| Ref | Expression |
|---|---|
| orcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| orcs | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 2 | orcs.1 | . 2 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: olcs 876 norasslem2 1536 ifor 4529 tppreqb 4756 frxp 8062 mndifsplit 22552 maducoeval2 22556 leibpilem2 26879 leibpi 26880 3o1cs 32442 3o2cs 32443 elrgspnlem2 33217 poimirlem31 37711 tsan2 38202 frege114d 43875 ntrneiel2 44203 nnfoctbdjlem 46577 homf0 49134 |
| Copyright terms: Public domain | W3C validator |