Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege48 Structured version   Visualization version   GIF version

Theorem frege48 41349
Description: Closed form of syllogism with internal disjunction. If 𝜑 is a sufficient condition for the occurrence of 𝜒 or 𝜓 and if 𝜒, as well as 𝜓, is a sufficient condition for 𝜃, then 𝜑 is a sufficient condition for 𝜃. See application in frege101 41461. Proposition 48 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege48 ((𝜑 → (¬ 𝜓𝜒)) → ((𝜒𝜃) → ((𝜓𝜃) → (𝜑𝜃))))

Proof of Theorem frege48
StepHypRef Expression
1 frege47 41348 . 2 ((¬ 𝜓𝜒) → ((𝜒𝜃) → ((𝜓𝜃) → 𝜃)))
2 frege23 41322 . 2 (((¬ 𝜓𝜒) → ((𝜒𝜃) → ((𝜓𝜃) → 𝜃))) → ((𝜑 → (¬ 𝜓𝜒)) → ((𝜒𝜃) → ((𝜓𝜃) → (𝜑𝜃)))))
31, 2ax-mp 5 1 ((𝜑 → (¬ 𝜓𝜒)) → ((𝜒𝜃) → ((𝜓𝜃) → (𝜑𝜃))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306  ax-frege28 41327  ax-frege31 41331  ax-frege41 41342
This theorem is referenced by:  frege101  41461
  Copyright terms: Public domain W3C validator