Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege49 Structured version   Visualization version   GIF version

Theorem frege49 41138
Description: Closed form of deduction with disjunction. Proposition 49 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege49 ((¬ 𝜑𝜓) → ((𝜑𝜒) → ((𝜓𝜒) → 𝜒)))

Proof of Theorem frege49
StepHypRef Expression
1 frege47 41136 . 2 ((¬ 𝜑𝜓) → ((𝜓𝜒) → ((𝜑𝜒) → 𝜒)))
2 frege12 41098 . 2 (((¬ 𝜑𝜓) → ((𝜓𝜒) → ((𝜑𝜒) → 𝜒))) → ((¬ 𝜑𝜓) → ((𝜑𝜒) → ((𝜓𝜒) → 𝜒))))
31, 2ax-mp 5 1 ((¬ 𝜑𝜓) → ((𝜑𝜒) → ((𝜓𝜒) → 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41075  ax-frege2 41076  ax-frege8 41094  ax-frege28 41115  ax-frege31 41119  ax-frege41 41130
This theorem is referenced by:  frege50  41139
  Copyright terms: Public domain W3C validator