Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege101 Structured version   Visualization version   GIF version

Theorem frege101 43957
Description: Lemma for frege102 43958. Proposition 101 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege99.z 𝑍𝑈
Assertion
Ref Expression
frege101 ((𝑍 = 𝑋 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)) → ((𝑋(t+‘𝑅)𝑍 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉))))

Proof of Theorem frege101
StepHypRef Expression
1 frege99.z . . 3 𝑍𝑈
21frege100 43956 . 2 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋))
3 frege48 43845 . 2 ((𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋)) → ((𝑍 = 𝑋 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)) → ((𝑋(t+‘𝑅)𝑍 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)))))
42, 3ax-mp 5 1 ((𝑍 = 𝑋 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)) → ((𝑋(t+‘𝑅)𝑍 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cun 3903   class class class wbr 5095   I cid 5517  cfv 6486  t+ctcl 14911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-frege1 43783  ax-frege2 43784  ax-frege8 43802  ax-frege28 43823  ax-frege31 43827  ax-frege41 43838  ax-frege52a 43850
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630
This theorem is referenced by:  frege102  43958
  Copyright terms: Public domain W3C validator