Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege101 Structured version   Visualization version   GIF version

Theorem frege101 41434
Description: Lemma for frege102 41435. Proposition 101 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege99.z 𝑍𝑈
Assertion
Ref Expression
frege101 ((𝑍 = 𝑋 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)) → ((𝑋(t+‘𝑅)𝑍 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉))))

Proof of Theorem frege101
StepHypRef Expression
1 frege99.z . . 3 𝑍𝑈
21frege100 41433 . 2 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋))
3 frege48 41322 . 2 ((𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋)) → ((𝑍 = 𝑋 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)) → ((𝑋(t+‘𝑅)𝑍 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)))))
42, 3ax-mp 5 1 ((𝑍 = 𝑋 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)) → ((𝑋(t+‘𝑅)𝑍 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉)) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉𝑋(t+‘𝑅)𝑉))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wcel 2112  cun 3882   class class class wbr 5070   I cid 5478  cfv 6415  t+ctcl 14599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346  ax-frege1 41260  ax-frege2 41261  ax-frege8 41279  ax-frege28 41300  ax-frege31 41304  ax-frege41 41315  ax-frege52a 41327
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5479  df-xp 5585  df-rel 5586
This theorem is referenced by:  frege102  41435
  Copyright terms: Public domain W3C validator