Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege54cor1a Structured version   Visualization version   GIF version

Theorem frege54cor1a 41361
Description: Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege54cor1a if-(𝜑, 𝜑, ¬ 𝜑)

Proof of Theorem frege54cor1a
StepHypRef Expression
1 ax-frege54a 41359 . 2 (𝜑𝜑)
2 frege54cor0a 41360 . 2 ((𝜑𝜑) ↔ if-(𝜑, 𝜑, ¬ 𝜑))
31, 2mpbi 229 1 if-(𝜑, 𝜑, ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-frege28 41327  ax-frege54a 41359
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060
This theorem is referenced by:  frege55a  41365
  Copyright terms: Public domain W3C validator