| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucofulem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for proving functor theorems. (Contributed by Zhi Wang, 25-Sep-2025.) |
| Ref | Expression |
|---|---|
| fucofulem1.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| fucofulem1.2 | ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜏)) → 𝜂) |
| fucofulem1.3 | ⊢ 𝜒 |
| fucofulem1.4 | ⊢ ((𝜑 ∧ 𝜂) → 𝜃) |
| fucofulem1.5 | ⊢ ((𝜑 ∧ 𝜂) → 𝜏) |
| Ref | Expression |
|---|---|
| fucofulem1 | ⊢ (𝜑 → (𝜓 ↔ 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | fucofulem1.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | |
| 3 | 2 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
| 4 | 3 | simp2d 1143 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 3 | simp3d 1144 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 6 | fucofulem1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜏)) → 𝜂) | |
| 7 | 1, 4, 5, 6 | syl12anc 836 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
| 8 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜂) → 𝜑) | |
| 9 | fucofulem1.3 | . . . 4 ⊢ 𝜒 | |
| 10 | 9 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝜂) → 𝜒) |
| 11 | fucofulem1.4 | . . 3 ⊢ ((𝜑 ∧ 𝜂) → 𝜃) | |
| 12 | fucofulem1.5 | . . 3 ⊢ ((𝜑 ∧ 𝜂) → 𝜏) | |
| 13 | 2 | biimpar 477 | . . 3 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜓) |
| 14 | 8, 10, 11, 12, 13 | syl13anc 1374 | . 2 ⊢ ((𝜑 ∧ 𝜂) → 𝜓) |
| 15 | 7, 14 | impbida 800 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |