Step | Hyp | Ref
| Expression |
1 | | fucofulem2.b |
. . . 4
⊢ 𝐵 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) |
2 | | eqid 2737 |
. . . . 5
⊢ ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
3 | | eqid 2737 |
. . . . . 6
⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) |
4 | 3 | fucbas 18025 |
. . . . 5
⊢ (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸)) |
5 | | eqid 2737 |
. . . . . 6
⊢ (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷) |
6 | 5 | fucbas 18025 |
. . . . 5
⊢ (𝐶 Func 𝐷) = (Base‘(𝐶 FuncCat 𝐷)) |
7 | 2, 4, 6 | xpcbas 18243 |
. . . 4
⊢ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))) |
8 | 1, 7 | eqtri 2765 |
. . 3
⊢ 𝐵 = (Base‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))) |
9 | 8 | funcf2lem2 48840 |
. 2
⊢ (𝐺 ∈ X𝑧 ∈
(𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑚 ∈ 𝐵 ∀𝑛 ∈ 𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)))) |
10 | | fnov 7571 |
. . 3
⊢ (𝐺 Fn (𝐵 × 𝐵) ↔ 𝐺 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑢𝐺𝑣))) |
11 | | ffnfv 7146 |
. . . . . . 7
⊢ ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)) ↔ ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ∧ ∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)))) |
12 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) |
13 | 3, 12 | fuchom 18026 |
. . . . . . . . . . 11
⊢ (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸)) |
14 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) |
15 | 5, 14 | fuchom 18026 |
. . . . . . . . . . 11
⊢ (𝐶 Nat 𝐷) = (Hom ‘(𝐶 FuncCat 𝐷)) |
16 | | fucofulem2.h |
. . . . . . . . . . 11
⊢ 𝐻 = (Hom ‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))) |
17 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → 𝑚 ∈ 𝐵) |
18 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → 𝑛 ∈ 𝐵) |
19 | 2, 8, 13, 15, 16, 17, 18 | xpchom 18245 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → (𝑚𝐻𝑛) = (((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)) × ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛)))) |
20 | 19 | fneq2d 6670 |
. . . . . . . . 9
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ↔ (𝑚𝐺𝑛) Fn (((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)) × ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛))))) |
21 | | fnov 7571 |
. . . . . . . . 9
⊢ ((𝑚𝐺𝑛) Fn (((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)) × ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛))) ↔ (𝑚𝐺𝑛) = (𝑏 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)), 𝑎 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎))) |
22 | 20, 21 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ↔ (𝑚𝐺𝑛) = (𝑏 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)), 𝑎 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)))) |
23 | 19 | raleqdv 3326 |
. . . . . . . . 9
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → (∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)) ↔ ∀𝑟 ∈ (((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)) × ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛)))((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)))) |
24 | | fveq2 6914 |
. . . . . . . . . . . 12
⊢ (𝑟 = 〈𝑝, 𝑞〉 → ((𝑚𝐺𝑛)‘𝑟) = ((𝑚𝐺𝑛)‘〈𝑝, 𝑞〉)) |
25 | | df-ov 7441 |
. . . . . . . . . . . 12
⊢ (𝑝(𝑚𝐺𝑛)𝑞) = ((𝑚𝐺𝑛)‘〈𝑝, 𝑞〉) |
26 | 24, 25 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ (𝑟 = 〈𝑝, 𝑞〉 → ((𝑚𝐺𝑛)‘𝑟) = (𝑝(𝑚𝐺𝑛)𝑞)) |
27 | 26 | eleq1d 2826 |
. . . . . . . . . 10
⊢ (𝑟 = 〈𝑝, 𝑞〉 → (((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)) ↔ (𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)))) |
28 | 27 | ralxp 5859 |
. . . . . . . . 9
⊢
(∀𝑟 ∈
(((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)) × ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛)))((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)) ↔ ∀𝑝 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛))∀𝑞 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛))) |
29 | 23, 28 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → (∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)) ↔ ∀𝑝 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛))∀𝑞 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)))) |
30 | 22, 29 | anbi12d 632 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → (((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ∧ ∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛))) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)), 𝑎 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛))∀𝑞 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛))))) |
31 | 11, 30 | bitrid 283 |
. . . . . 6
⊢ ((𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)), 𝑎 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛))∀𝑞 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛))))) |
32 | 31 | adantl 481 |
. . . . 5
⊢
((⊤ ∧ (𝑚
∈ 𝐵 ∧ 𝑛 ∈ 𝐵)) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)), 𝑎 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛))∀𝑞 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛))))) |
33 | 32 | 2ralbidva 3219 |
. . . 4
⊢ (⊤
→ (∀𝑚 ∈
𝐵 ∀𝑛 ∈ 𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)) ↔ ∀𝑚 ∈ 𝐵 ∀𝑛 ∈ 𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)), 𝑎 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛))∀𝑞 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛))))) |
34 | 33 | mptru 1546 |
. . 3
⊢
(∀𝑚 ∈
𝐵 ∀𝑛 ∈ 𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)) ↔ ∀𝑚 ∈ 𝐵 ∀𝑛 ∈ 𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)), 𝑎 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛))∀𝑞 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛)))) |
35 | 10, 34 | anbi12i 628 |
. 2
⊢ ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑚 ∈ 𝐵 ∀𝑛 ∈ 𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛))) ↔ (𝐺 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚 ∈ 𝐵 ∀𝑛 ∈ 𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)), 𝑎 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛))∀𝑞 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛))))) |
36 | 9, 35 | bitri 275 |
1
⊢ (𝐺 ∈ X𝑧 ∈
(𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚 ∈ 𝐵 ∀𝑛 ∈ 𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛)), 𝑎 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st ‘𝑚)(𝐷 Nat 𝐸)(1st ‘𝑛))∀𝑞 ∈ ((2nd ‘𝑚)(𝐶 Nat 𝐷)(2nd ‘𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹‘𝑚)(𝐶 Nat 𝐸)(𝐹‘𝑛))))) |