Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucofulem2 Structured version   Visualization version   GIF version

Theorem fucofulem2 49436
Description: Lemma for proving functor theorems. Maybe consider eufnfv 7169 to prove the uniqueness of a functor. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
fucofulem2.b 𝐵 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))
fucofulem2.h 𝐻 = (Hom ‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
Assertion
Ref Expression
fucofulem2 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
Distinct variable groups:   𝐵,𝑚,𝑛,𝑧   𝑢,𝐵,𝑣   𝐶,𝑎,𝑏,𝑚,𝑛   𝐶,𝑝,𝑞,𝑚,𝑛   𝑧,𝐶   𝐷,𝑎,𝑏   𝐷,𝑝,𝑞   𝐸,𝑎,𝑏,𝑚,𝑛   𝐸,𝑝,𝑞   𝑧,𝐸   𝑚,𝐹,𝑛,𝑝,𝑞   𝑧,𝐹   𝐺,𝑎,𝑏,𝑚,𝑛   𝐺,𝑝,𝑞   𝑢,𝐺,𝑣   𝑧,𝐺   𝑚,𝐻,𝑛,𝑧
Allowed substitution hints:   𝐵(𝑞,𝑝,𝑎,𝑏)   𝐶(𝑣,𝑢)   𝐷(𝑧,𝑣,𝑢,𝑚,𝑛)   𝐸(𝑣,𝑢)   𝐹(𝑣,𝑢,𝑎,𝑏)   𝐻(𝑣,𝑢,𝑞,𝑝,𝑎,𝑏)

Proof of Theorem fucofulem2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fucofulem2.b . . . 4 𝐵 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))
2 eqid 2733 . . . . 5 ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
32xpcfucbas 49377 . . . 4 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
41, 3eqtri 2756 . . 3 𝐵 = (Base‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
54funcf2lem2 49207 . 2 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
6 fnov 7483 . . 3 (𝐺 Fn (𝐵 × 𝐵) ↔ 𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)))
7 ffnfv 7058 . . . . . . 7 ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ∧ ∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
8 fucofulem2.h . . . . . . . . . . 11 𝐻 = (Hom ‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
9 simpl 482 . . . . . . . . . . 11 ((𝑚𝐵𝑛𝐵) → 𝑚𝐵)
10 simpr 484 . . . . . . . . . . 11 ((𝑚𝐵𝑛𝐵) → 𝑛𝐵)
112, 4, 8, 9, 10xpcfuchom 49379 . . . . . . . . . 10 ((𝑚𝐵𝑛𝐵) → (𝑚𝐻𝑛) = (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))))
1211fneq2d 6580 . . . . . . . . 9 ((𝑚𝐵𝑛𝐵) → ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ↔ (𝑚𝐺𝑛) Fn (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)))))
13 fnov 7483 . . . . . . . . 9 ((𝑚𝐺𝑛) Fn (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))) ↔ (𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)))
1412, 13bitrdi 287 . . . . . . . 8 ((𝑚𝐵𝑛𝐵) → ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ↔ (𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎))))
1511raleqdv 3293 . . . . . . . . 9 ((𝑚𝐵𝑛𝐵) → (∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑟 ∈ (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)))((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
16 fveq2 6828 . . . . . . . . . . . 12 (𝑟 = ⟨𝑝, 𝑞⟩ → ((𝑚𝐺𝑛)‘𝑟) = ((𝑚𝐺𝑛)‘⟨𝑝, 𝑞⟩))
17 df-ov 7355 . . . . . . . . . . . 12 (𝑝(𝑚𝐺𝑛)𝑞) = ((𝑚𝐺𝑛)‘⟨𝑝, 𝑞⟩)
1816, 17eqtr4di 2786 . . . . . . . . . . 11 (𝑟 = ⟨𝑝, 𝑞⟩ → ((𝑚𝐺𝑛)‘𝑟) = (𝑝(𝑚𝐺𝑛)𝑞))
1918eleq1d 2818 . . . . . . . . . 10 (𝑟 = ⟨𝑝, 𝑞⟩ → (((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ (𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
2019ralxp 5785 . . . . . . . . 9 (∀𝑟 ∈ (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)))((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))
2115, 20bitrdi 287 . . . . . . . 8 ((𝑚𝐵𝑛𝐵) → (∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
2214, 21anbi12d 632 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → (((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ∧ ∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
237, 22bitrid 283 . . . . . 6 ((𝑚𝐵𝑛𝐵) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
2423adantl 481 . . . . 5 ((⊤ ∧ (𝑚𝐵𝑛𝐵)) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
25242ralbidva 3195 . . . 4 (⊤ → (∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
2625mptru 1548 . . 3 (∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
276, 26anbi12i 628 . 2 ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
285, 27bitri 275 1 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2113  wral 3048  cop 4581   × cxp 5617   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354  1st c1st 7925  2nd c2nd 7926  m cmap 8756  Xcixp 8827  Basecbs 17122  Hom chom 17174   Func cfunc 17763   Nat cnat 17853   FuncCat cfuc 17854   ×c cxpc 18076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-func 17767  df-nat 17855  df-fuc 17856  df-xpc 18080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator