Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucofulem2 Structured version   Visualization version   GIF version

Theorem fucofulem2 48966
Description: Lemma for proving functor theorems. Maybe consider eufnfv 7232 to prove the uniqueness of a functor. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
fucofulem2.b 𝐵 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))
fucofulem2.h 𝐻 = (Hom ‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
Assertion
Ref Expression
fucofulem2 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
Distinct variable groups:   𝐵,𝑚,𝑛,𝑧   𝑢,𝐵,𝑣   𝐶,𝑎,𝑏,𝑚,𝑛   𝐶,𝑝,𝑞,𝑚,𝑛   𝑧,𝐶   𝐷,𝑎,𝑏   𝐷,𝑝,𝑞   𝐸,𝑎,𝑏,𝑚,𝑛   𝐸,𝑝,𝑞   𝑧,𝐸   𝑚,𝐹,𝑛,𝑝,𝑞   𝑧,𝐹   𝐺,𝑎,𝑏,𝑚,𝑛   𝐺,𝑝,𝑞   𝑢,𝐺,𝑣   𝑧,𝐺   𝑚,𝐻,𝑛,𝑧
Allowed substitution hints:   𝐵(𝑞,𝑝,𝑎,𝑏)   𝐶(𝑣,𝑢)   𝐷(𝑧,𝑣,𝑢,𝑚,𝑛)   𝐸(𝑣,𝑢)   𝐹(𝑣,𝑢,𝑎,𝑏)   𝐻(𝑣,𝑢,𝑞,𝑝,𝑎,𝑏)

Proof of Theorem fucofulem2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fucofulem2.b . . . 4 𝐵 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))
2 eqid 2734 . . . . 5 ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
3 eqid 2734 . . . . . 6 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
43fucbas 17980 . . . . 5 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
5 eqid 2734 . . . . . 6 (𝐶 FuncCat 𝐷) = (𝐶 FuncCat 𝐷)
65fucbas 17980 . . . . 5 (𝐶 Func 𝐷) = (Base‘(𝐶 FuncCat 𝐷))
72, 4, 6xpcbas 18194 . . . 4 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
81, 7eqtri 2757 . . 3 𝐵 = (Base‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
98funcf2lem2 48868 . 2 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
10 fnov 7547 . . 3 (𝐺 Fn (𝐵 × 𝐵) ↔ 𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)))
11 ffnfv 7120 . . . . . . 7 ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ∧ ∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
12 eqid 2734 . . . . . . . . . . . 12 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
133, 12fuchom 17981 . . . . . . . . . . 11 (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸))
14 eqid 2734 . . . . . . . . . . . 12 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
155, 14fuchom 17981 . . . . . . . . . . 11 (𝐶 Nat 𝐷) = (Hom ‘(𝐶 FuncCat 𝐷))
16 fucofulem2.h . . . . . . . . . . 11 𝐻 = (Hom ‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
17 simpl 482 . . . . . . . . . . 11 ((𝑚𝐵𝑛𝐵) → 𝑚𝐵)
18 simpr 484 . . . . . . . . . . 11 ((𝑚𝐵𝑛𝐵) → 𝑛𝐵)
192, 8, 13, 15, 16, 17, 18xpchom 18196 . . . . . . . . . 10 ((𝑚𝐵𝑛𝐵) → (𝑚𝐻𝑛) = (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))))
2019fneq2d 6643 . . . . . . . . 9 ((𝑚𝐵𝑛𝐵) → ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ↔ (𝑚𝐺𝑛) Fn (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)))))
21 fnov 7547 . . . . . . . . 9 ((𝑚𝐺𝑛) Fn (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))) ↔ (𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)))
2220, 21bitrdi 287 . . . . . . . 8 ((𝑚𝐵𝑛𝐵) → ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ↔ (𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎))))
2319raleqdv 3310 . . . . . . . . 9 ((𝑚𝐵𝑛𝐵) → (∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑟 ∈ (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)))((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
24 fveq2 6887 . . . . . . . . . . . 12 (𝑟 = ⟨𝑝, 𝑞⟩ → ((𝑚𝐺𝑛)‘𝑟) = ((𝑚𝐺𝑛)‘⟨𝑝, 𝑞⟩))
25 df-ov 7417 . . . . . . . . . . . 12 (𝑝(𝑚𝐺𝑛)𝑞) = ((𝑚𝐺𝑛)‘⟨𝑝, 𝑞⟩)
2624, 25eqtr4di 2787 . . . . . . . . . . 11 (𝑟 = ⟨𝑝, 𝑞⟩ → ((𝑚𝐺𝑛)‘𝑟) = (𝑝(𝑚𝐺𝑛)𝑞))
2726eleq1d 2818 . . . . . . . . . 10 (𝑟 = ⟨𝑝, 𝑞⟩ → (((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ (𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
2827ralxp 5834 . . . . . . . . 9 (∀𝑟 ∈ (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)))((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))
2923, 28bitrdi 287 . . . . . . . 8 ((𝑚𝐵𝑛𝐵) → (∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
3022, 29anbi12d 632 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → (((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ∧ ∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
3111, 30bitrid 283 . . . . . 6 ((𝑚𝐵𝑛𝐵) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
3231adantl 481 . . . . 5 ((⊤ ∧ (𝑚𝐵𝑛𝐵)) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
33322ralbidva 3206 . . . 4 (⊤ → (∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
3433mptru 1546 . . 3 (∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
3510, 34anbi12i 628 . 2 ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
369, 35bitri 275 1 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wtru 1540  wcel 2107  wral 3050  cop 4614   × cxp 5665   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  cmpo 7416  1st c1st 7995  2nd c2nd 7996  m cmap 8849  Xcixp 8920  Basecbs 17230  Hom chom 17285   Func cfunc 17871   Nat cnat 17961   FuncCat cfuc 17962   ×c cxpc 18184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-map 8851  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-fz 13531  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-func 17875  df-nat 17963  df-fuc 17964  df-xpc 18188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator