Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucofulem2 Structured version   Visualization version   GIF version

Theorem fucofulem2 49284
Description: Lemma for proving functor theorems. Maybe consider eufnfv 7169 to prove the uniqueness of a functor. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
fucofulem2.b 𝐵 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))
fucofulem2.h 𝐻 = (Hom ‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
Assertion
Ref Expression
fucofulem2 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
Distinct variable groups:   𝐵,𝑚,𝑛,𝑧   𝑢,𝐵,𝑣   𝐶,𝑎,𝑏,𝑚,𝑛   𝐶,𝑝,𝑞,𝑚,𝑛   𝑧,𝐶   𝐷,𝑎,𝑏   𝐷,𝑝,𝑞   𝐸,𝑎,𝑏,𝑚,𝑛   𝐸,𝑝,𝑞   𝑧,𝐸   𝑚,𝐹,𝑛,𝑝,𝑞   𝑧,𝐹   𝐺,𝑎,𝑏,𝑚,𝑛   𝐺,𝑝,𝑞   𝑢,𝐺,𝑣   𝑧,𝐺   𝑚,𝐻,𝑛,𝑧
Allowed substitution hints:   𝐵(𝑞,𝑝,𝑎,𝑏)   𝐶(𝑣,𝑢)   𝐷(𝑧,𝑣,𝑢,𝑚,𝑛)   𝐸(𝑣,𝑢)   𝐹(𝑣,𝑢,𝑎,𝑏)   𝐻(𝑣,𝑢,𝑞,𝑝,𝑎,𝑏)

Proof of Theorem fucofulem2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fucofulem2.b . . . 4 𝐵 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))
2 eqid 2729 . . . . 5 ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
32xpcfucbas 49225 . . . 4 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
41, 3eqtri 2752 . . 3 𝐵 = (Base‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
54funcf2lem2 49055 . 2 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
6 fnov 7484 . . 3 (𝐺 Fn (𝐵 × 𝐵) ↔ 𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)))
7 ffnfv 7057 . . . . . . 7 ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ∧ ∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
8 fucofulem2.h . . . . . . . . . . 11 𝐻 = (Hom ‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
9 simpl 482 . . . . . . . . . . 11 ((𝑚𝐵𝑛𝐵) → 𝑚𝐵)
10 simpr 484 . . . . . . . . . . 11 ((𝑚𝐵𝑛𝐵) → 𝑛𝐵)
112, 4, 8, 9, 10xpcfuchom 49227 . . . . . . . . . 10 ((𝑚𝐵𝑛𝐵) → (𝑚𝐻𝑛) = (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))))
1211fneq2d 6580 . . . . . . . . 9 ((𝑚𝐵𝑛𝐵) → ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ↔ (𝑚𝐺𝑛) Fn (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)))))
13 fnov 7484 . . . . . . . . 9 ((𝑚𝐺𝑛) Fn (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))) ↔ (𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)))
1412, 13bitrdi 287 . . . . . . . 8 ((𝑚𝐵𝑛𝐵) → ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ↔ (𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎))))
1511raleqdv 3290 . . . . . . . . 9 ((𝑚𝐵𝑛𝐵) → (∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑟 ∈ (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)))((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
16 fveq2 6826 . . . . . . . . . . . 12 (𝑟 = ⟨𝑝, 𝑞⟩ → ((𝑚𝐺𝑛)‘𝑟) = ((𝑚𝐺𝑛)‘⟨𝑝, 𝑞⟩))
17 df-ov 7356 . . . . . . . . . . . 12 (𝑝(𝑚𝐺𝑛)𝑞) = ((𝑚𝐺𝑛)‘⟨𝑝, 𝑞⟩)
1816, 17eqtr4di 2782 . . . . . . . . . . 11 (𝑟 = ⟨𝑝, 𝑞⟩ → ((𝑚𝐺𝑛)‘𝑟) = (𝑝(𝑚𝐺𝑛)𝑞))
1918eleq1d 2813 . . . . . . . . . 10 (𝑟 = ⟨𝑝, 𝑞⟩ → (((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ (𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
2019ralxp 5788 . . . . . . . . 9 (∀𝑟 ∈ (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)))((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))
2115, 20bitrdi 287 . . . . . . . 8 ((𝑚𝐵𝑛𝐵) → (∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
2214, 21anbi12d 632 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → (((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ∧ ∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
237, 22bitrid 283 . . . . . 6 ((𝑚𝐵𝑛𝐵) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
2423adantl 481 . . . . 5 ((⊤ ∧ (𝑚𝐵𝑛𝐵)) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
25242ralbidva 3191 . . . 4 (⊤ → (∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
2625mptru 1547 . . 3 (∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
276, 26anbi12i 628 . 2 ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
285, 27bitri 275 1 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wral 3044  cop 4585   × cxp 5621   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  m cmap 8760  Xcixp 8831  Basecbs 17138  Hom chom 17190   Func cfunc 17779   Nat cnat 17869   FuncCat cfuc 17870   ×c cxpc 18092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-hom 17203  df-cco 17204  df-func 17783  df-nat 17871  df-fuc 17872  df-xpc 18096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator