Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucofulem2 Structured version   Visualization version   GIF version

Theorem fucofulem2 49206
Description: Lemma for proving functor theorems. Maybe consider eufnfv 7210 to prove the uniqueness of a functor. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
fucofulem2.b 𝐵 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))
fucofulem2.h 𝐻 = (Hom ‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
Assertion
Ref Expression
fucofulem2 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
Distinct variable groups:   𝐵,𝑚,𝑛,𝑧   𝑢,𝐵,𝑣   𝐶,𝑎,𝑏,𝑚,𝑛   𝐶,𝑝,𝑞,𝑚,𝑛   𝑧,𝐶   𝐷,𝑎,𝑏   𝐷,𝑝,𝑞   𝐸,𝑎,𝑏,𝑚,𝑛   𝐸,𝑝,𝑞   𝑧,𝐸   𝑚,𝐹,𝑛,𝑝,𝑞   𝑧,𝐹   𝐺,𝑎,𝑏,𝑚,𝑛   𝐺,𝑝,𝑞   𝑢,𝐺,𝑣   𝑧,𝐺   𝑚,𝐻,𝑛,𝑧
Allowed substitution hints:   𝐵(𝑞,𝑝,𝑎,𝑏)   𝐶(𝑣,𝑢)   𝐷(𝑧,𝑣,𝑢,𝑚,𝑛)   𝐸(𝑣,𝑢)   𝐹(𝑣,𝑢,𝑎,𝑏)   𝐻(𝑣,𝑢,𝑞,𝑝,𝑎,𝑏)

Proof of Theorem fucofulem2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fucofulem2.b . . . 4 𝐵 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))
2 eqid 2730 . . . . 5 ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
32xpcfucbas 49153 . . . 4 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
41, 3eqtri 2753 . . 3 𝐵 = (Base‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
54funcf2lem2 48999 . 2 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
6 fnov 7527 . . 3 (𝐺 Fn (𝐵 × 𝐵) ↔ 𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)))
7 ffnfv 7098 . . . . . . 7 ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ∧ ∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
8 fucofulem2.h . . . . . . . . . . 11 𝐻 = (Hom ‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))
9 simpl 482 . . . . . . . . . . 11 ((𝑚𝐵𝑛𝐵) → 𝑚𝐵)
10 simpr 484 . . . . . . . . . . 11 ((𝑚𝐵𝑛𝐵) → 𝑛𝐵)
112, 4, 8, 9, 10xpcfuchom 49155 . . . . . . . . . 10 ((𝑚𝐵𝑛𝐵) → (𝑚𝐻𝑛) = (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))))
1211fneq2d 6620 . . . . . . . . 9 ((𝑚𝐵𝑛𝐵) → ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ↔ (𝑚𝐺𝑛) Fn (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)))))
13 fnov 7527 . . . . . . . . 9 ((𝑚𝐺𝑛) Fn (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))) ↔ (𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)))
1412, 13bitrdi 287 . . . . . . . 8 ((𝑚𝐵𝑛𝐵) → ((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ↔ (𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎))))
1511raleqdv 3302 . . . . . . . . 9 ((𝑚𝐵𝑛𝐵) → (∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑟 ∈ (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)))((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
16 fveq2 6865 . . . . . . . . . . . 12 (𝑟 = ⟨𝑝, 𝑞⟩ → ((𝑚𝐺𝑛)‘𝑟) = ((𝑚𝐺𝑛)‘⟨𝑝, 𝑞⟩))
17 df-ov 7397 . . . . . . . . . . . 12 (𝑝(𝑚𝐺𝑛)𝑞) = ((𝑚𝐺𝑛)‘⟨𝑝, 𝑞⟩)
1816, 17eqtr4di 2783 . . . . . . . . . . 11 (𝑟 = ⟨𝑝, 𝑞⟩ → ((𝑚𝐺𝑛)‘𝑟) = (𝑝(𝑚𝐺𝑛)𝑞))
1918eleq1d 2814 . . . . . . . . . 10 (𝑟 = ⟨𝑝, 𝑞⟩ → (((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ (𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
2019ralxp 5813 . . . . . . . . 9 (∀𝑟 ∈ (((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)) × ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)))((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))
2115, 20bitrdi 287 . . . . . . . 8 ((𝑚𝐵𝑛𝐵) → (∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
2214, 21anbi12d 632 . . . . . . 7 ((𝑚𝐵𝑛𝐵) → (((𝑚𝐺𝑛) Fn (𝑚𝐻𝑛) ∧ ∀𝑟 ∈ (𝑚𝐻𝑛)((𝑚𝐺𝑛)‘𝑟) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
237, 22bitrid 283 . . . . . 6 ((𝑚𝐵𝑛𝐵) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
2423adantl 481 . . . . 5 ((⊤ ∧ (𝑚𝐵𝑛𝐵)) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
25242ralbidva 3201 . . . 4 (⊤ → (∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
2625mptru 1547 . . 3 (∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)) ↔ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))))
276, 26anbi12i 628 . 2 ((𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑚𝐵𝑛𝐵 (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛))) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
285, 27bitri 275 1 (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wral 3046  cop 4603   × cxp 5644   Fn wfn 6514  wf 6515  cfv 6519  (class class class)co 7394  cmpo 7396  1st c1st 7975  2nd c2nd 7976  m cmap 8803  Xcixp 8874  Basecbs 17185  Hom chom 17237   Func cfunc 17822   Nat cnat 17912   FuncCat cfuc 17913   ×c cxpc 18135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-fz 13482  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-func 17826  df-nat 17914  df-fuc 17915  df-xpc 18139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator