| Metamath
Proof Explorer Theorem List (p. 493 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30898) |
(30899-32421) |
(32422-49916) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | func0g2 49201 | The source category of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐵 = ∅) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 = ∅) | ||
| Theorem | initc 49202* | Sets with empty base are the only initial objects in the category of small categories. Example 7.2(3) of [Adamek] p. 101. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ ((𝐶 ∈ V ∧ ∅ = (Base‘𝐶)) ↔ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝐶 Func 𝑑)) | ||
| Theorem | cofu1st2nd 49203 | Rewrite the functor composition with separated functor parts. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝐺 ∘func 𝐹) = (〈(1st ‘𝐺), (2nd ‘𝐺)〉 ∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉)) | ||
| Theorem | rescofuf 49204 | The restriction of functor composition is a function from product functor space to functor space. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸) | ||
| Theorem | cofu1a 49205 | Value of the object part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = (𝑀‘𝑋)) | ||
| Theorem | cofu2a 49206 | Value of the morphism part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑋𝑁𝑌)‘𝑅)) | ||
| Theorem | cofucla 49207 | The composition of two functors is a functor. Proposition 3.23 of [Adamek] p. 33. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) ⇒ ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) ∈ (𝐶 Func 𝐸)) | ||
| Theorem | funchomf 49208 | Source categories of a functor have the same set of objects and morphisms. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐴 Func 𝐶)𝐺) & ⊢ (𝜑 → 𝐹(𝐵 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) | ||
| Theorem | idfurcl 49209 | Reverse closure for an identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) | ||
| Theorem | idfu1stf1o 49210 | The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → (1st ‘𝐼):𝐵–1-1-onto→𝐵) | ||
| Theorem | idfu1stalem 49211 | Lemma for idfu1sta 49212. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
| Theorem | idfu1sta 49212 | Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) ⇒ ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) | ||
| Theorem | idfu1a 49213 | Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝐼)‘𝑋) = 𝑋) | ||
| Theorem | idfu2nda 49214 | Value of the morphism part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (𝑋(Hom ‘𝐷)𝑌)) ⇒ ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ 𝐻)) | ||
| Theorem | imasubclem1 49215* | Lemma for imasubc 49262. (Contributed by Zhi Wang, 6-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) | ||
| Theorem | imasubclem2 49216* | Lemma for imasubc 49262. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ 𝐾 = (𝑦 ∈ 𝑋, 𝑧 ∈ 𝑌 ↦ ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷)) ⇒ ⊢ (𝜑 → 𝐾 Fn (𝑋 × 𝑌)) | ||
| Theorem | imasubclem3 49217* | Lemma for imasubc 49262. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐾 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ∪ 𝑧 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦}))((𝐻‘𝐶) “ 𝐷)) ⇒ ⊢ (𝜑 → (𝑋𝐾𝑌) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) | ||
| Theorem | imaf1homlem 49218 | Lemma for imaf1hom 49219 and other theorems. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) ⇒ ⊢ (𝜑 → ({(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋}) ∧ (𝐹‘(◡𝐹‘𝑋)) = 𝑋 ∧ (◡𝐹‘𝑋) ∈ 𝐵)) | ||
| Theorem | imaf1hom 49219* | The hom-set of an image of a functor injective on objects. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) ⇒ ⊢ (𝜑 → (𝑋𝐾𝑌) = (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌)) “ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌)))) | ||
| Theorem | imaidfu2lem 49220 | Lemma for imaidfu2 49222. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → ((1st ‘𝐼) “ (Base‘𝐷)) = (Base‘𝐷)) | ||
| Theorem | imaidfu 49221* | The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Homf ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ (𝐻‘𝑝))) & ⊢ 𝑆 = ((1st ‘𝐼) “ 𝐴) ⇒ ⊢ (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾) | ||
| Theorem | imaidfu2 49222* | The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Homf ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) ⇒ ⊢ (𝜑 → 𝐽 = 𝐾) | ||
| Theorem | cofid1a 49223 | Express the object part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) ⇒ ⊢ (𝜑 → ((1st ‘𝐺)‘((1st ‘𝐹)‘𝑋)) = 𝑋) | ||
| Theorem | cofid2a 49224 | Express the morphism part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅)) = 𝑅) | ||
| Theorem | cofid1 49225 | Express the object part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) ⇒ ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) = 𝑋) | ||
| Theorem | cofid2 49226 | Express the morphism part of (𝐺 ∘func 𝐹) = 𝐼 explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = 𝑅) | ||
| Theorem | cofidvala 49227* | The property "𝐹 is a section of 𝐺 " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) & ⊢ 𝐻 = (Hom ‘𝐷) ⇒ ⊢ (𝜑 → (((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))))) | ||
| Theorem | cofidf2a 49228 | If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘𝐹)‘𝑋)𝐽((1st ‘𝐹)‘𝑌)) ∧ (((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)):(((1st ‘𝐹)‘𝑋)𝐽((1st ‘𝐹)‘𝑌))–onto→(𝑋𝐻𝑌))) | ||
| Theorem | cofidf1a 49229 | If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the object part of 𝐹 is injective, and the object part of 𝐺 is surjective. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → ((1st ‘𝐹):𝐵–1-1→𝐶 ∧ (1st ‘𝐺):𝐶–onto→𝐵)) | ||
| Theorem | cofidval 49230* | The property "〈𝐹, 𝐺〉 is a section of 〈𝐾, 𝐿〉 " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) & ⊢ 𝐻 = (Hom ‘𝐷) ⇒ ⊢ (𝜑 → ((𝐾 ∘ 𝐹) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))))) | ||
| Theorem | cofidf2 49231 | If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ ((𝐹‘𝑋)𝐿(𝐹‘𝑌)):((𝐹‘𝑋)𝐽(𝐹‘𝑌))–onto→(𝑋𝐻𝑌))) | ||
| Theorem | cofidf1 49232 | If "〈𝐹, 𝐺〉 is a section of 〈𝐾, 𝐿〉 " in a category of small categories (in a universe), then 𝐹 is injective, and 𝐾 is surjective. (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → (𝐹:𝐵–1-1→𝐶 ∧ 𝐾:𝐶–onto→𝐵)) | ||
| Syntax | coppf 49233 | Extend class notation with the operation generating opposite functors. |
| class oppFunc | ||
| Definition | df-oppf 49234* | Definition of the operation generating opposite functors. Definition 3.41 of [Adamek] p. 39. The object part of the functor is unchanged while the morphism part is transposed due to reversed direction of arrows in the opposite category. The opposite functor is a functor on opposite categories (oppfoppc 49252). (Contributed by Zhi Wang, 4-Nov-2025.) Better reverse closure. (Revised by Zhi Wang, 13-Nov-2025.) |
| ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | ||
| Theorem | oppffn 49235 | oppFunc is a function on (V × V). (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ oppFunc Fn (V × V) | ||
| Theorem | reldmoppf 49236 | The domain of oppFunc is a relation. (Contributed by Zhi Wang, 13-Nov-2025.) |
| ⊢ Rel dom oppFunc | ||
| Theorem | oppfvalg 49237 | Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.) |
| ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) | ||
| Theorem | oppfrcllem 49238 | Lemma for oppfrcl 49239. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 ⇒ ⊢ (𝜑 → 𝐺 ≠ ∅) | ||
| Theorem | oppfrcl 49239 | If an opposite functor of a class is a functor, then the original class must be an ordered pair. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) ⇒ ⊢ (𝜑 → 𝐹 ∈ (V × V)) | ||
| Theorem | oppfrcl2 49240 | If an opposite functor of a class is a functor, then the two components of the original class must be sets. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | oppfrcl3 49241 | If an opposite functor of a class is a functor, then the second component of the original class must be a relation whose domain is a relation as well. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵)) | ||
| Theorem | oppf1st2nd 49242 | Rewrite the opposite functor into its components (eqopi 7957). (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st ‘𝐺) = 𝐴 ∧ (2nd ‘𝐺) = tpos 𝐵))) | ||
| Theorem | 2oppf 49243 | The double opposite functor is the original functor. Remark 3.42 of [Adamek] p. 39. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑅) & ⊢ Rel 𝑅 & ⊢ 𝐺 = ( oppFunc ‘𝐹) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐺) = 𝐹) | ||
| Theorem | eloppf 49244 | The pre-image of a non-empty opposite functor is non-empty; and the second component of the pre-image is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝐺 = ( oppFunc ‘𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝐹 ≠ ∅ ∧ (Rel (2nd ‘𝐹) ∧ Rel dom (2nd ‘𝐹)))) | ||
| Theorem | eloppf2 49245 | Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ (𝐹 oppFunc 𝐺) = 𝐾 & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Rel 𝐺 ∧ Rel dom 𝐺))) | ||
| Theorem | oppfvallem 49246 | Lemma for oppfval 49247. (Contributed by Zhi Wang, 13-Nov-2025.) |
| ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺)) | ||
| Theorem | oppfval 49247 | Value of the opposite functor. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 oppFunc 𝐺) = 〈𝐹, tpos 𝐺〉) | ||
| Theorem | oppfval2 49248 | Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.) |
| ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) | ||
| Theorem | oppfval3 49249 | Value of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 = 〈𝐺, 𝐾〉) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) = 〈𝐺, tpos 𝐾〉) | ||
| Theorem | oppf1 49250 | Value of the object part of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (1st ‘( oppFunc ‘𝐹)) = (1st ‘𝐹)) | ||
| Theorem | oppf2 49251 | Value of the morphism part of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (𝑀(2nd ‘( oppFunc ‘𝐹))𝑁) = (𝑁(2nd ‘𝐹)𝑀)) | ||
| Theorem | oppfoppc 49252 | The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (𝐹 oppFunc 𝐺) ∈ (𝑂 Func 𝑃)) | ||
| Theorem | oppfoppc2 49253 | The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃)) | ||
| Theorem | funcoppc2 49254 | A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)tpos 𝐺) | ||
| Theorem | funcoppc4 49255 | A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝐹 oppFunc 𝐺) ∈ (𝑂 Func 𝑃)) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | ||
| Theorem | funcoppc5 49256 | A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | ||
| Theorem | 2oppffunc 49257 | The opposite functor of an opposite functor is a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025.) The functor in opposite categories does not have to be an opposite functor. (Revised by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑃)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝐶 Func 𝐷)) | ||
| Theorem | funcoppc3 49258 | A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) & ⊢ (𝜑 → 𝐺 Fn (𝐴 × 𝐵)) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | ||
| Theorem | oppff1 49259 | The operation generating opposite functors is injective. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) ⇒ ⊢ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) | ||
| Theorem | oppff1o 49260 | The operation generating opposite functors is bijective. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)) | ||
| Theorem | cofuoppf 49261 | Composition of opposite functors. (Contributed by Zhi Wang, 26-Nov-2025.) |
| ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐾) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (( oppFunc ‘𝐺) ∘func ( oppFunc ‘𝐹)) = ( oppFunc ‘𝐾)) | ||
| Theorem | imasubc 49262* | An image of a full functor is a full subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Full 𝐸)𝐺) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐽 = (Homf ‘𝐸) ⇒ ⊢ (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆 ⊆ 𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)) | ||
| Theorem | imasubc2 49263* | An image of a full functor is a (full) subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Full 𝐸)𝐺) ⇒ ⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐸)) | ||
| Theorem | imassc 49264* | An image of a functor satisfies the subcategory subset relation. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ 𝐽 = (Homf ‘𝐸) ⇒ ⊢ (𝜑 → 𝐾 ⊆cat 𝐽) | ||
| Theorem | imaid 49265* | An image of a functor preserves the identity morphism. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ 𝐼 = (Id‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝑋𝐾𝑋)) | ||
| Theorem | imaf1co 49266* | An image of a functor whose object part is injective preserves the composition. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ ∙ = (comp‘𝐸) & ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐾𝑌)) & ⊢ (𝜑 → 𝑁 ∈ (𝑌𝐾𝑍)) ⇒ ⊢ (𝜑 → (𝑁(〈𝑋, 𝑌〉 ∙ 𝑍)𝑀) ∈ (𝑋𝐾𝑍)) | ||
| Theorem | imasubc3 49267* | An image of a functor injective on objects is a subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ 𝑆 = (𝐹 “ 𝐴) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → Fun ◡𝐹) ⇒ ⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐸)) | ||
| Theorem | fthcomf 49268* | Source categories of a faithful functor have the same base, hom-sets and composition operation if the composition is compatible in images of the functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ (𝜑 → 𝐹(𝐴 Faith 𝐶)𝐺) & ⊢ (𝜑 → 𝐹(𝐵 Func 𝐷)𝐺) & ⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐴)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐴)𝑧))) → (((𝑦𝐺𝑧)‘𝑔)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐶)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐷)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑓))) ⇒ ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) | ||
| Theorem | idfth 49269 | The inclusion functor is a faithful functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) ⇒ ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸)) | ||
| Theorem | idemb 49270 | The inclusion functor is an embedding. Remark 4.4(1) in [Adamek] p. 49. (Contributed by Zhi Wang, 16-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) ⇒ ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun ◡(1st ‘𝐼))) | ||
| Theorem | idsubc 49271 | The source category of an inclusion functor is a subcategory of the target category. See also Remark 4.4 in [Adamek] p. 49. (Contributed by Zhi Wang, 10-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐷) ⇒ ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 ∈ (Subcat‘𝐸)) | ||
| Theorem | idfullsubc 49272 | The source category of an inclusion functor is a full subcategory of the target category if the inclusion functor is full. Remark 4.4(2) in [Adamek] p. 49. See also ressffth 17847. (Contributed by Zhi Wang, 11-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐷) & ⊢ 𝐽 = (Homf ‘𝐸) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝐼 ∈ (𝐷 Full 𝐸) → (𝐵 ⊆ 𝐶 ∧ (𝐽 ↾ (𝐵 × 𝐵)) = 𝐻)) | ||
| Theorem | cofidfth 49273 | If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then 𝐹 is faithful. Combined with cofidf1 49232, this theorem proves that 𝐹 is an embedding (a faithful functor injective on objects, remark 3.28(1) of [Adamek] p. 34). (Contributed by Zhi Wang, 15-Nov-2025.) |
| ⊢ 𝐼 = (idfunc‘𝐷) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) & ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) ⇒ ⊢ (𝜑 → 𝐹(𝐷 Faith 𝐸)𝐺) | ||
| Theorem | fulloppf 49274 | The opposite functor of a full functor is also full. Proposition 3.43(d) in [Adamek] p. 39. (Contributed by Zhi Wang, 26-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Full 𝐷)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Full 𝑃)) | ||
| Theorem | fthoppf 49275 | The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in [Adamek] p. 39. (Contributed by Zhi Wang, 26-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Faith 𝐷)) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ (𝑂 Faith 𝑃)) | ||
| Theorem | ffthoppf 49276 | The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Zhi Wang, 26-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) ⇒ ⊢ (𝜑 → ( oppFunc ‘𝐹) ∈ ((𝑂 Full 𝑃) ∩ (𝑂 Faith 𝑃))) | ||
| Theorem | upciclem1 49277* | Lemma for upcic 49281, upeu 49282, and upeu2 49283. (Contributed by Zhi Wang, 16-Sep-2025.) (Proof shortened by Zhi Wang, 5-Nov-2025.) |
| ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑛 ∈ (𝑍𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑛 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) ⇒ ⊢ (𝜑 → ∃!𝑙 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑙)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) | ||
| Theorem | upciclem2 49278 | Lemma for upciclem3 49279 and upeu2 49283. (Contributed by Zhi Wang, 19-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) & ⊢ · = (comp‘𝐷) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) ⇒ ⊢ (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))𝑁)) | ||
| Theorem | upciclem3 49279* | Lemma for upciclem4 49280. (Contributed by Zhi Wang, 17-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ · = (comp‘𝐷) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑋)) & ⊢ (𝜑 → 𝑀 = (((𝑌𝐺𝑋)‘𝐿)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁)) & ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) ⇒ ⊢ (𝜑 → (𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾) = ((Id‘𝐷)‘𝑋)) | ||
| Theorem | upciclem4 49280* | Lemma for upcic 49281 and upeu 49282. (Contributed by Zhi Wang, 19-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) & ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐷)𝑌 ∧ ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) | ||
| Theorem | upcic 49281* | A universal property defines an object up to isomorphism given its existence. (Contributed by Zhi Wang, 17-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) & ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) ⇒ ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐷)𝑌) | ||
| Theorem | upeu 49282* | A universal property defines an essentially unique (strong form) pair of object 𝑋 and morphism 𝑀 if it exists. (Contributed by Zhi Wang, 19-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) & ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) ⇒ ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) | ||
| Theorem | upeu2 49283* | Generate new universal morphism through isomorphism from existing universal object. (Contributed by Zhi Wang, 20-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐶) & ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) & ⊢ 𝐼 = (Iso‘𝐷) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝑍𝐽(𝐹‘𝑌)) ∧ ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁))) | ||
| Syntax | cup 49284 | Extend class notation with the class of universal properties. |
| class UP | ||
| Definition | df-up 49285* |
Definition of the class of universal properties.
Given categories 𝐷 and 𝐸, if 𝐹:𝐷⟶𝐸 is a functor and 𝑊 an object of 𝐸, a universal pair from 𝑊 to 𝐹 is a pair 〈𝑋, 𝑀〉 consisting of an object 𝑋 of 𝐷 and a morphism 𝑀:𝑊⟶𝐹𝑋 of 𝐸, such that to every pair 〈𝑦, 𝑔〉 with 𝑦 an object of 𝐷 and 𝑔:𝑊⟶𝐹𝑦 a morphism of 𝐸, there is a unique morphism 𝑘:𝑋⟶𝑦 of 𝐷 with 𝐹𝑘 ⚬ 𝑀 = 𝑔. Such property is commonly referred to as a universal property. In our definition, it is denoted as 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀. Note that the universal pair is termed differently as "universal arrow" in p. 55 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 6 Oct 2025). Interestingly, the "universal arrow" is referring to the morphism 𝑀 instead of the pair near the end of the same piece of the text, causing name collision. The name "universal arrow" is also adopted in papers such as https://arxiv.org/pdf/2212.08981. Alternatively, the universal pair is called the "universal morphism" in Wikipedia (https://en.wikipedia.org/wiki/Universal_property) as well as published works, e.g., https://arxiv.org/pdf/2412.12179. But the pair 〈𝑋, 𝑀〉 should be named differently as the morphism 𝑀, and thus we call 𝑋 the universal object, 𝑀 the universal morphism, and 〈𝑋, 𝑀〉 the universal pair. Given its existence, such universal pair is essentially unique (upeu3 49306), and can be generated from an existing universal pair by isomorphisms (upeu4 49307). See also oppcup 49318 for the dual concept. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ ⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))})) | ||
| Theorem | reldmup 49286 | The domain of UP is a relation. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ Rel dom UP | ||
| Theorem | upfval 49287* | Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) (Proof shortened by Zhi Wang, 12-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) ⇒ ⊢ (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))}) | ||
| Theorem | upfval2 49288* | Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽((1st ‘𝐹)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽((1st ‘𝐹)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝐹)𝑦)‘𝑘)(〈𝑊, ((1st ‘𝐹)‘𝑥)〉𝑂((1st ‘𝐹)‘𝑦))𝑚))}) | ||
| Theorem | upfval3 49289* | Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) ⇒ ⊢ (𝜑 → (〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊) = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽(𝐹‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚))}) | ||
| Theorem | isuplem 49290* | Lemma for isup 49291 and other theorems. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) ⇒ ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)))) | ||
| Theorem | isup 49291* | The predicate "is a universal pair". (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝑂 = (comp‘𝐸) & ⊢ (𝜑 → 𝑊 ∈ 𝐶) & ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ⇒ ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀))) | ||
| Theorem | uppropd 49292 | If two categories have the same set of objects, morphisms, and compositions, then they have the same universal pairs. (Contributed by Zhi Wang, 20-Nov-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) & ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 UP 𝐶) = (𝐵 UP 𝐷)) | ||
| Theorem | reldmup2 49293 | The domain of (𝐷 UP 𝐸) is a relation. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ Rel dom (𝐷 UP 𝐸) | ||
| Theorem | relup 49294 | The set of universal pairs is a relation. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ Rel (𝐹(𝐷 UP 𝐸)𝑊) | ||
| Theorem | uprcl 49295 | Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝑋 ∈ (𝐹(𝐷 UP 𝐸)𝑊) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ 𝐶)) | ||
| Theorem | up1st2nd 49296 | Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) ⇒ ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) | ||
| Theorem | up1st2ndr 49297 | Combine separated parts in the universal property predicate. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) ⇒ ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) | ||
| Theorem | up1st2ndb 49298 | Combine/separate parts in the universal property predicate. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀 ↔ 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀)) | ||
| Theorem | up1st2nd2 49299 | Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ (𝐹(𝐷 UP 𝐸)𝑊)) ⇒ ⊢ (𝜑 → (1st ‘𝑋)(𝐹(𝐷 UP 𝐸)𝑊)(2nd ‘𝑋)) | ||
| Theorem | uprcl2 49300 | Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) ⇒ ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |