Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp2d | Structured version Visualization version GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp2d | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp2 1135 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
Copyright terms: Public domain | W3C validator |