| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diag2f1 | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is non-empty, the morphism part of a diagonal functor is injective functions from hom-sets into sets of natural transformations. (Contributed by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| diag2f1.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diag2f1.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag2f1.b | ⊢ 𝐵 = (Base‘𝐷) |
| diag2f1.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| diag2f1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diag2f1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| diag2f1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| diag2f1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| diag2f1.0 | ⊢ (𝜑 → 𝐵 ≠ ∅) |
| diag2f1.n | ⊢ 𝑁 = (𝐷 Nat 𝐶) |
| Ref | Expression |
|---|---|
| diag2f1 | ⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2f1.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 2 | diag2f1.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | eqid 2729 | . . . 4 ⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) | |
| 4 | diag2f1.n | . . . 4 ⊢ 𝑁 = (𝐷 Nat 𝐶) | |
| 5 | 3, 4 | fuchom 17908 | . . 3 ⊢ 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶)) |
| 6 | diag2f1.l | . . . . 5 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 7 | diag2f1.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 8 | diag2f1.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 9 | 6, 7, 8, 3 | diagcl 18184 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
| 10 | 9 | func1st2nd 49060 | . . 3 ⊢ (𝜑 → (1st ‘𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd ‘𝐿)) |
| 11 | diag2f1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 12 | diag2f1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 13 | 1, 2, 5, 10, 11, 12 | funcf2 17812 | . 2 ⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| 14 | diag2f1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 15 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝐶 ∈ Cat) |
| 16 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝐷 ∈ Cat) |
| 17 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑋 ∈ 𝐴) |
| 18 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑌 ∈ 𝐴) |
| 19 | diag2f1.0 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝐵 ≠ ∅) |
| 21 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 22 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑔 ∈ (𝑋𝐻𝑌)) | |
| 23 | 6, 1, 14, 2, 15, 16, 17, 18, 20, 21, 22 | diag2f1lem 49292 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → (((𝑋(2nd ‘𝐿)𝑌)‘𝑓) = ((𝑋(2nd ‘𝐿)𝑌)‘𝑔) → 𝑓 = 𝑔)) |
| 24 | 23 | ralrimivva 3178 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ (𝑋𝐻𝑌)∀𝑔 ∈ (𝑋𝐻𝑌)(((𝑋(2nd ‘𝐿)𝑌)‘𝑓) = ((𝑋(2nd ‘𝐿)𝑌)‘𝑔) → 𝑓 = 𝑔)) |
| 25 | dff13 7212 | . 2 ⊢ ((𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)) ↔ ((𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)) ∧ ∀𝑓 ∈ (𝑋𝐻𝑌)∀𝑔 ∈ (𝑋𝐻𝑌)(((𝑋(2nd ‘𝐿)𝑌)‘𝑓) = ((𝑋(2nd ‘𝐿)𝑌)‘𝑔) → 𝑓 = 𝑔))) | |
| 26 | 13, 24, 25 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∅c0 4292 ⟶wf 6496 –1-1→wf1 6497 ‘cfv 6500 (class class class)co 7370 1st c1st 7946 2nd c2nd 7947 Basecbs 17157 Hom chom 17209 Catccat 17607 Nat cnat 17888 FuncCat cfuc 17889 Δfunccdiag 18155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-map 8779 df-ixp 8849 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-fz 13448 df-struct 17095 df-slot 17130 df-ndx 17142 df-base 17158 df-hom 17222 df-cco 17223 df-cat 17611 df-cid 17612 df-func 17802 df-nat 17890 df-fuc 17891 df-xpc 18115 df-1stf 18116 df-curf 18157 df-diag 18159 |
| This theorem is referenced by: diag2f1o 49521 |
| Copyright terms: Public domain | W3C validator |