Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diag2f1 Structured version   Visualization version   GIF version

Theorem diag2f1 49409
Description: If 𝐵 is non-empty, the morphism part of a diagonal functor is injective functions from hom-sets into sets of natural transformations. (Contributed by Zhi Wang, 21-Oct-2025.)
Hypotheses
Ref Expression
diag2f1.l 𝐿 = (𝐶Δfunc𝐷)
diag2f1.a 𝐴 = (Base‘𝐶)
diag2f1.b 𝐵 = (Base‘𝐷)
diag2f1.h 𝐻 = (Hom ‘𝐶)
diag2f1.c (𝜑𝐶 ∈ Cat)
diag2f1.d (𝜑𝐷 ∈ Cat)
diag2f1.x (𝜑𝑋𝐴)
diag2f1.y (𝜑𝑌𝐴)
diag2f1.0 (𝜑𝐵 ≠ ∅)
diag2f1.n 𝑁 = (𝐷 Nat 𝐶)
Assertion
Ref Expression
diag2f1 (𝜑 → (𝑋(2nd𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)))

Proof of Theorem diag2f1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diag2f1.a . . 3 𝐴 = (Base‘𝐶)
2 diag2f1.h . . 3 𝐻 = (Hom ‘𝐶)
3 eqid 2731 . . . 4 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
4 diag2f1.n . . . 4 𝑁 = (𝐷 Nat 𝐶)
53, 4fuchom 17871 . . 3 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶))
6 diag2f1.l . . . . 5 𝐿 = (𝐶Δfunc𝐷)
7 diag2f1.c . . . . 5 (𝜑𝐶 ∈ Cat)
8 diag2f1.d . . . . 5 (𝜑𝐷 ∈ Cat)
96, 7, 8, 3diagcl 18147 . . . 4 (𝜑𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
109func1st2nd 49176 . . 3 (𝜑 → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
11 diag2f1.x . . 3 (𝜑𝑋𝐴)
12 diag2f1.y . . 3 (𝜑𝑌𝐴)
131, 2, 5, 10, 11, 12funcf2 17775 . 2 (𝜑 → (𝑋(2nd𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)))
14 diag2f1.b . . . 4 𝐵 = (Base‘𝐷)
157adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝐶 ∈ Cat)
168adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝐷 ∈ Cat)
1711adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑋𝐴)
1812adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑌𝐴)
19 diag2f1.0 . . . . 5 (𝜑𝐵 ≠ ∅)
2019adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝐵 ≠ ∅)
21 simprl 770 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑓 ∈ (𝑋𝐻𝑌))
22 simprr 772 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑔 ∈ (𝑋𝐻𝑌))
236, 1, 14, 2, 15, 16, 17, 18, 20, 21, 22diag2f1lem 49408 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → (((𝑋(2nd𝐿)𝑌)‘𝑓) = ((𝑋(2nd𝐿)𝑌)‘𝑔) → 𝑓 = 𝑔))
2423ralrimivva 3175 . 2 (𝜑 → ∀𝑓 ∈ (𝑋𝐻𝑌)∀𝑔 ∈ (𝑋𝐻𝑌)(((𝑋(2nd𝐿)𝑌)‘𝑓) = ((𝑋(2nd𝐿)𝑌)‘𝑔) → 𝑓 = 𝑔))
25 dff13 7188 . 2 ((𝑋(2nd𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)) ↔ ((𝑋(2nd𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)) ∧ ∀𝑓 ∈ (𝑋𝐻𝑌)∀𝑔 ∈ (𝑋𝐻𝑌)(((𝑋(2nd𝐿)𝑌)‘𝑓) = ((𝑋(2nd𝐿)𝑌)‘𝑔) → 𝑓 = 𝑔)))
2613, 24, 25sylanbrc 583 1 (𝜑 → (𝑋(2nd𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  c0 4280  wf 6477  1-1wf1 6478  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17120  Hom chom 17172  Catccat 17570   Nat cnat 17851   FuncCat cfuc 17852  Δfunccdiag 18118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-func 17765  df-nat 17853  df-fuc 17854  df-xpc 18078  df-1stf 18079  df-curf 18120  df-diag 18122
This theorem is referenced by:  diag2f1o  49637
  Copyright terms: Public domain W3C validator