| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impbida | Structured version Visualization version GIF version | ||
| Description: Deduce an equivalence from two implications. Variant of impbid 212. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| impbida.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| impbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Ref | Expression |
|---|---|
| impbida | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | impbida.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 2, 4 | impbid 212 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Copyright terms: Public domain | W3C validator |