Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ggen31 Structured version   Visualization version   GIF version

Theorem ggen31 42165
Description: gen31 42241 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ggen31.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
ggen31 (𝜑 → (𝜓 → (𝜒 → ∀𝑥𝜃)))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥   𝜓,𝑥
Allowed substitution hint:   𝜃(𝑥)

Proof of Theorem ggen31
StepHypRef Expression
1 ggen31.1 . . . 4 (𝜑 → (𝜓 → (𝜒𝜃)))
21imp 407 . . 3 ((𝜑𝜓) → (𝜒𝜃))
32alrimdv 1932 . 2 ((𝜑𝜓) → (𝜒 → ∀𝑥𝜃))
43ex 413 1 (𝜑 → (𝜓 → (𝜒 → ∀𝑥𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  onfrALTlem2  42166  gen31  42241
  Copyright terms: Public domain W3C validator