Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem3 Structured version   Visualization version   GIF version

Theorem onfrALTlem3 42164
Description: Lemma for onfrALT 42169. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Distinct variable groups:   𝑦,𝑎   𝑥,𝑦

Proof of Theorem onfrALTlem3
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ssid 3943 . . 3 (𝑎𝑥) ⊆ (𝑎𝑥)
2 simpr 485 . . . . 5 ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ¬ (𝑎𝑥) = ∅)
32a1i 11 . . . 4 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ¬ (𝑎𝑥) = ∅))
4 df-ne 2944 . . . 4 ((𝑎𝑥) ≠ ∅ ↔ ¬ (𝑎𝑥) = ∅)
53, 4syl6ibr 251 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → (𝑎𝑥) ≠ ∅))
6 pm3.2 470 . . 3 ((𝑎𝑥) ⊆ (𝑎𝑥) → ((𝑎𝑥) ≠ ∅ → ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅)))
71, 5, 6mpsylsyld 69 . 2 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅)))
8 vex 3436 . . . . 5 𝑥 ∈ V
98inex2 5242 . . . 4 (𝑎𝑥) ∈ V
10 inss2 4163 . . . . . . 7 (𝑎𝑥) ⊆ 𝑥
11 simpl 483 . . . . . . . . . 10 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ On)
12 simpl 483 . . . . . . . . . 10 ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → 𝑥𝑎)
13 ssel 3914 . . . . . . . . . 10 (𝑎 ⊆ On → (𝑥𝑎𝑥 ∈ On))
1411, 12, 13syl2im 40 . . . . . . . . 9 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → 𝑥 ∈ On))
15 eloni 6276 . . . . . . . . 9 (𝑥 ∈ On → Ord 𝑥)
1614, 15syl6 35 . . . . . . . 8 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → Ord 𝑥))
17 ordwe 6279 . . . . . . . 8 (Ord 𝑥 → E We 𝑥)
1816, 17syl6 35 . . . . . . 7 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → E We 𝑥))
19 wess 5576 . . . . . . 7 ((𝑎𝑥) ⊆ 𝑥 → ( E We 𝑥 → E We (𝑎𝑥)))
2010, 18, 19mpsylsyld 69 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → E We (𝑎𝑥)))
21 wefr 5579 . . . . . 6 ( E We (𝑎𝑥) → E Fr (𝑎𝑥))
2220, 21syl6 35 . . . . 5 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → E Fr (𝑎𝑥)))
23 dfepfr 5574 . . . . 5 ( E Fr (𝑎𝑥) ↔ ∀𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅))
2422, 23syl6ib 250 . . . 4 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∀𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅)))
25 spsbc 3729 . . . 4 ((𝑎𝑥) ∈ V → (∀𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) → [(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅)))
269, 24, 25mpsylsyld 69 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → [(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅)))
27 onfrALTlem5 42162 . . 3 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
2826, 27syl6ib 250 . 2 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)))
297, 28mpdd 43 1 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1537   = wceq 1539  wcel 2106  wne 2943  wrex 3065  Vcvv 3432  [wsbc 3716  cin 3886  wss 3887  c0 4256   E cep 5494   Fr wfr 5541   We wwe 5543  Ord word 6265  Oncon0 6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270
This theorem is referenced by:  onfrALTlem2  42166
  Copyright terms: Public domain W3C validator