Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem3 Structured version   Visualization version   GIF version

Theorem onfrALTlem3 44577
Description: Lemma for onfrALT 44582. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Distinct variable groups:   𝑦,𝑎   𝑥,𝑦

Proof of Theorem onfrALTlem3
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ssid 3952 . . 3 (𝑎𝑥) ⊆ (𝑎𝑥)
2 simpr 484 . . . . 5 ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ¬ (𝑎𝑥) = ∅)
32a1i 11 . . . 4 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ¬ (𝑎𝑥) = ∅))
4 df-ne 2929 . . . 4 ((𝑎𝑥) ≠ ∅ ↔ ¬ (𝑎𝑥) = ∅)
53, 4imbitrrdi 252 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → (𝑎𝑥) ≠ ∅))
6 pm3.2 469 . . 3 ((𝑎𝑥) ⊆ (𝑎𝑥) → ((𝑎𝑥) ≠ ∅ → ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅)))
71, 5, 6mpsylsyld 69 . 2 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅)))
8 vex 3440 . . . . 5 𝑥 ∈ V
98inex2 5251 . . . 4 (𝑎𝑥) ∈ V
10 inss2 4183 . . . . . . 7 (𝑎𝑥) ⊆ 𝑥
11 simpl 482 . . . . . . . . . 10 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ On)
12 simpl 482 . . . . . . . . . 10 ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → 𝑥𝑎)
13 ssel 3923 . . . . . . . . . 10 (𝑎 ⊆ On → (𝑥𝑎𝑥 ∈ On))
1411, 12, 13syl2im 40 . . . . . . . . 9 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → 𝑥 ∈ On))
15 eloni 6311 . . . . . . . . 9 (𝑥 ∈ On → Ord 𝑥)
1614, 15syl6 35 . . . . . . . 8 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → Ord 𝑥))
17 ordwe 6314 . . . . . . . 8 (Ord 𝑥 → E We 𝑥)
1816, 17syl6 35 . . . . . . 7 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → E We 𝑥))
19 wess 5597 . . . . . . 7 ((𝑎𝑥) ⊆ 𝑥 → ( E We 𝑥 → E We (𝑎𝑥)))
2010, 18, 19mpsylsyld 69 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → E We (𝑎𝑥)))
21 wefr 5601 . . . . . 6 ( E We (𝑎𝑥) → E Fr (𝑎𝑥))
2220, 21syl6 35 . . . . 5 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → E Fr (𝑎𝑥)))
23 dfepfr 5595 . . . . 5 ( E Fr (𝑎𝑥) ↔ ∀𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅))
2422, 23imbitrdi 251 . . . 4 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∀𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅)))
25 spsbc 3749 . . . 4 ((𝑎𝑥) ∈ V → (∀𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) → [(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅)))
269, 24, 25mpsylsyld 69 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → [(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅)))
27 onfrALTlem5 44575 . . 3 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
2826, 27imbitrdi 251 . 2 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)))
297, 28mpdd 43 1 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  [wsbc 3736  cin 3896  wss 3897  c0 4278   E cep 5510   Fr wfr 5561   We wwe 5563  Ord word 6300  Oncon0 6301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-on 6305
This theorem is referenced by:  onfrALTlem2  44579
  Copyright terms: Public domain W3C validator