Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gen31 Structured version   Visualization version   GIF version

Theorem gen31 43367
Description: Virtual deduction generalizing rule for one quantifying variable and three virtual hypothesis. gen31 43367 is ggen31 43291 with virtual deductions. (Contributed by Alan Sare, 22-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
gen31.1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
Assertion
Ref Expression
gen31 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝑥𝜃   )
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥   𝜓,𝑥
Allowed substitution hint:   𝜃(𝑥)

Proof of Theorem gen31
StepHypRef Expression
1 gen31.1 . . . 4 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
21dfvd3i 43338 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
32ggen31 43291 . 2 (𝜑 → (𝜓 → (𝜒 → ∀𝑥𝜃)))
43dfvd3ir 43339 1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝑥𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wal 1539  (   wvd3 43333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-vd3 43336
This theorem is referenced by:  onfrALTlem2VD  43635
  Copyright terms: Public domain W3C validator