MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadfval Structured version   Visualization version   GIF version

Theorem sadfval 16360
Description: Define the addition of two bit sequences, using df-had 1595 and df-cad 1608 bit operations. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
sadfval (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
Distinct variable groups:   𝑘,𝑐,𝑚,𝑛   𝐴,𝑐,𝑘,𝑚   𝐵,𝑐,𝑘,𝑚   𝐶,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)

Proof of Theorem sadfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadval.a . . 3 (𝜑𝐴 ⊆ ℕ0)
2 nn0ex 12384 . . . 4 0 ∈ V
32elpw2 5272 . . 3 (𝐴 ∈ 𝒫 ℕ0𝐴 ⊆ ℕ0)
41, 3sylibr 234 . 2 (𝜑𝐴 ∈ 𝒫 ℕ0)
5 sadval.b . . 3 (𝜑𝐵 ⊆ ℕ0)
62elpw2 5272 . . 3 (𝐵 ∈ 𝒫 ℕ0𝐵 ⊆ ℕ0)
75, 6sylibr 234 . 2 (𝜑𝐵 ∈ 𝒫 ℕ0)
8 simpl 482 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
98eleq2d 2817 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑘𝑥𝑘𝐴))
10 simpr 484 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
1110eleq2d 2817 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑘𝑦𝑘𝐵))
12 simp1l 1198 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → 𝑥 = 𝐴)
1312eleq2d 2817 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → (𝑚𝑥𝑚𝐴))
14 simp1r 1199 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → 𝑦 = 𝐵)
1514eleq2d 2817 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → (𝑚𝑦𝑚𝐵))
16 biidd 262 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → (∅ ∈ 𝑐 ↔ ∅ ∈ 𝑐))
1713, 15, 16cadbi123d 1611 . . . . . . . . . . 11 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → (cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐) ↔ cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐)))
1817ifbid 4499 . . . . . . . . . 10 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅) = if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))
1918mpoeq3dva 7423 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)) = (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)))
2019seqeq2d 13912 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))))
21 sadval.c . . . . . . . 8 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2220, 21eqtr4di 2784 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = 𝐶)
2322fveq1d 6824 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) = (𝐶𝑘))
2423eleq2d 2817 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) ↔ ∅ ∈ (𝐶𝑘)))
259, 11, 24hadbi123d 1596 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (hadd(𝑘𝑥, 𝑘𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)) ↔ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))))
2625rabbidv 3402 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝑥, 𝑘𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))} = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
27 df-sad 16359 . . 3 sadd = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝑥, 𝑘𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))})
282rabex 5277 . . 3 {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))} ∈ V
2926, 27, 28ovmpoa 7501 . 2 ((𝐴 ∈ 𝒫 ℕ0𝐵 ∈ 𝒫 ℕ0) → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
304, 7, 29syl2anc 584 1 (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  haddwhad 1594  caddwcad 1607  wcel 2111  {crab 3395  wss 3902  c0 4283  ifcif 4475  𝒫 cpw 4550  cmpt 5172  cfv 6481  (class class class)co 7346  cmpo 7348  1oc1o 8378  2oc2o 8379  0cc0 11003  1c1 11004  cmin 11341  0cn0 12378  seqcseq 13905   sadd csad 16328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-1cn 11061  ax-addcl 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-had 1595  df-cad 1608  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12123  df-n0 12379  df-seq 13906  df-sad 16359
This theorem is referenced by:  sadval  16364  sadadd2lem  16367  sadadd3  16369  sadcl  16370  sadcom  16371
  Copyright terms: Public domain W3C validator