MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadfval Structured version   Visualization version   GIF version

Theorem sadfval 15661
Description: Define the addition of two bit sequences, using df-had 1557 and df-cad 1570 bit operations. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
sadfval (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
Distinct variable groups:   𝑘,𝑐,𝑚,𝑛   𝐴,𝑐,𝑘,𝑚   𝐵,𝑐,𝑘,𝑚   𝐶,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)

Proof of Theorem sadfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadval.a . . 3 (𝜑𝐴 ⊆ ℕ0)
2 nn0ex 11714 . . . 4 0 ∈ V
32elpw2 5104 . . 3 (𝐴 ∈ 𝒫 ℕ0𝐴 ⊆ ℕ0)
41, 3sylibr 226 . 2 (𝜑𝐴 ∈ 𝒫 ℕ0)
5 sadval.b . . 3 (𝜑𝐵 ⊆ ℕ0)
62elpw2 5104 . . 3 (𝐵 ∈ 𝒫 ℕ0𝐵 ⊆ ℕ0)
75, 6sylibr 226 . 2 (𝜑𝐵 ∈ 𝒫 ℕ0)
8 simpl 475 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
98eleq2d 2851 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑘𝑥𝑘𝐴))
10 simpr 477 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
1110eleq2d 2851 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑘𝑦𝑘𝐵))
12 simp1l 1177 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → 𝑥 = 𝐴)
1312eleq2d 2851 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → (𝑚𝑥𝑚𝐴))
14 simp1r 1178 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → 𝑦 = 𝐵)
1514eleq2d 2851 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → (𝑚𝑦𝑚𝐵))
16 biidd 254 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → (∅ ∈ 𝑐 ↔ ∅ ∈ 𝑐))
1713, 15, 16cadbi123d 1573 . . . . . . . . . . 11 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → (cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐) ↔ cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐)))
1817ifbid 4372 . . . . . . . . . 10 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅) = if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))
1918mpoeq3dva 7049 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)) = (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)))
2019seqeq2d 13191 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))))
21 sadval.c . . . . . . . 8 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2220, 21syl6eqr 2832 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = 𝐶)
2322fveq1d 6501 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) = (𝐶𝑘))
2423eleq2d 2851 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) ↔ ∅ ∈ (𝐶𝑘)))
259, 11, 24hadbi123d 1558 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (hadd(𝑘𝑥, 𝑘𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)) ↔ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))))
2625rabbidv 3403 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝑥, 𝑘𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))} = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
27 df-sad 15660 . . 3 sadd = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝑥, 𝑘𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))})
282rabex 5091 . . 3 {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))} ∈ V
2926, 27, 28ovmpoa 7121 . 2 ((𝐴 ∈ 𝒫 ℕ0𝐵 ∈ 𝒫 ℕ0) → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
304, 7, 29syl2anc 576 1 (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  haddwhad 1556  caddwcad 1569  wcel 2050  {crab 3092  wss 3829  c0 4178  ifcif 4350  𝒫 cpw 4422  cmpt 5008  cfv 6188  (class class class)co 6976  cmpo 6978  1oc1o 7898  2oc2o 7899  0cc0 10335  1c1 10336  cmin 10670  0cn0 11707  seqcseq 13184   sadd csad 15629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-1cn 10393  ax-addcl 10395
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-xor 1489  df-tru 1510  df-had 1557  df-cad 1570  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-nn 11440  df-n0 11708  df-seq 13185  df-sad 15660
This theorem is referenced by:  sadval  15665  sadadd2lem  15668  sadadd3  15670  sadcl  15671  sadcom  15672
  Copyright terms: Public domain W3C validator