Step | Hyp | Ref
| Expression |
1 | | sadval.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
2 | | nn0ex 12169 |
. . . 4
⊢
ℕ0 ∈ V |
3 | 2 | elpw2 5264 |
. . 3
⊢ (𝐴 ∈ 𝒫
ℕ0 ↔ 𝐴 ⊆
ℕ0) |
4 | 1, 3 | sylibr 233 |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝒫
ℕ0) |
5 | | sadval.b |
. . 3
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
6 | 2 | elpw2 5264 |
. . 3
⊢ (𝐵 ∈ 𝒫
ℕ0 ↔ 𝐵 ⊆
ℕ0) |
7 | 5, 6 | sylibr 233 |
. 2
⊢ (𝜑 → 𝐵 ∈ 𝒫
ℕ0) |
8 | | simpl 482 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) |
9 | 8 | eleq2d 2824 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑘 ∈ 𝑥 ↔ 𝑘 ∈ 𝐴)) |
10 | | simpr 484 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
11 | 10 | eleq2d 2824 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑘 ∈ 𝑦 ↔ 𝑘 ∈ 𝐵)) |
12 | | simp1l 1195 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0)
→ 𝑥 = 𝐴) |
13 | 12 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0)
→ (𝑚 ∈ 𝑥 ↔ 𝑚 ∈ 𝐴)) |
14 | | simp1r 1196 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0)
→ 𝑦 = 𝐵) |
15 | 14 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0)
→ (𝑚 ∈ 𝑦 ↔ 𝑚 ∈ 𝐵)) |
16 | | biidd 261 |
. . . . . . . . . . . 12
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0)
→ (∅ ∈ 𝑐
↔ ∅ ∈ 𝑐)) |
17 | 13, 15, 16 | cadbi123d 1613 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0)
→ (cadd(𝑚 ∈ 𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐) ↔ cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐))) |
18 | 17 | ifbid 4479 |
. . . . . . . . . 10
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0)
→ if(cadd(𝑚 ∈
𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅) = if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) |
19 | 18 | mpoeq3dva 7330 |
. . . . . . . . 9
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅)) = (𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))) |
20 | 19 | seqeq2d 13656 |
. . . . . . . 8
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 − 1)))) =
seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))) |
21 | | sadval.c |
. . . . . . . 8
⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))) |
22 | 20, 21 | eqtr4di 2797 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 − 1)))) = 𝐶) |
23 | 22 | fveq1d 6758 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘) = (𝐶‘𝑘)) |
24 | 23 | eleq2d 2824 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘) ↔
∅ ∈ (𝐶‘𝑘))) |
25 | 9, 11, 24 | hadbi123d 1597 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (hadd(𝑘 ∈ 𝑥, 𝑘 ∈ 𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘)) ↔
hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘)))) |
26 | 25 | rabbidv 3404 |
. . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → {𝑘 ∈ ℕ0 ∣
hadd(𝑘 ∈ 𝑥, 𝑘 ∈ 𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘))} = {𝑘 ∈ ℕ0
∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))}) |
27 | | df-sad 16086 |
. . 3
⊢ sadd =
(𝑥 ∈ 𝒫
ℕ0, 𝑦
∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣
hadd(𝑘 ∈ 𝑥, 𝑘 ∈ 𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘))}) |
28 | 2 | rabex 5251 |
. . 3
⊢ {𝑘 ∈ ℕ0
∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))} ∈ V |
29 | 26, 27, 28 | ovmpoa 7406 |
. 2
⊢ ((𝐴 ∈ 𝒫
ℕ0 ∧ 𝐵
∈ 𝒫 ℕ0) → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣
hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))}) |
30 | 4, 7, 29 | syl2anc 583 |
1
⊢ (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣
hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))}) |