MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadfval Structured version   Visualization version   GIF version

Theorem sadfval 16381
Description: Define the addition of two bit sequences, using df-had 1594 and df-cad 1607 bit operations. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
sadfval (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
Distinct variable groups:   𝑘,𝑐,𝑚,𝑛   𝐴,𝑐,𝑘,𝑚   𝐵,𝑐,𝑘,𝑚   𝐶,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)

Proof of Theorem sadfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadval.a . . 3 (𝜑𝐴 ⊆ ℕ0)
2 nn0ex 12408 . . . 4 0 ∈ V
32elpw2 5276 . . 3 (𝐴 ∈ 𝒫 ℕ0𝐴 ⊆ ℕ0)
41, 3sylibr 234 . 2 (𝜑𝐴 ∈ 𝒫 ℕ0)
5 sadval.b . . 3 (𝜑𝐵 ⊆ ℕ0)
62elpw2 5276 . . 3 (𝐵 ∈ 𝒫 ℕ0𝐵 ⊆ ℕ0)
75, 6sylibr 234 . 2 (𝜑𝐵 ∈ 𝒫 ℕ0)
8 simpl 482 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
98eleq2d 2814 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑘𝑥𝑘𝐴))
10 simpr 484 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
1110eleq2d 2814 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑘𝑦𝑘𝐵))
12 simp1l 1198 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → 𝑥 = 𝐴)
1312eleq2d 2814 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → (𝑚𝑥𝑚𝐴))
14 simp1r 1199 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → 𝑦 = 𝐵)
1514eleq2d 2814 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → (𝑚𝑦𝑚𝐵))
16 biidd 262 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → (∅ ∈ 𝑐 ↔ ∅ ∈ 𝑐))
1713, 15, 16cadbi123d 1610 . . . . . . . . . . 11 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → (cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐) ↔ cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐)))
1817ifbid 4502 . . . . . . . . . 10 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0) → if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅) = if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅))
1918mpoeq3dva 7430 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)) = (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)))
2019seqeq2d 13933 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))))
21 sadval.c . . . . . . . 8 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2220, 21eqtr4di 2782 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = 𝐶)
2322fveq1d 6828 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) = (𝐶𝑘))
2423eleq2d 2814 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) ↔ ∅ ∈ (𝐶𝑘)))
259, 11, 24hadbi123d 1595 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (hadd(𝑘𝑥, 𝑘𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)) ↔ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))))
2625rabbidv 3404 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝑥, 𝑘𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))} = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
27 df-sad 16380 . . 3 sadd = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝑥, 𝑘𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))})
282rabex 5281 . . 3 {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))} ∈ V
2926, 27, 28ovmpoa 7508 . 2 ((𝐴 ∈ 𝒫 ℕ0𝐵 ∈ 𝒫 ℕ0) → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
304, 7, 29syl2anc 584 1 (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  haddwhad 1593  caddwcad 1606  wcel 2109  {crab 3396  wss 3905  c0 4286  ifcif 4478  𝒫 cpw 4553  cmpt 5176  cfv 6486  (class class class)co 7353  cmpo 7355  1oc1o 8388  2oc2o 8389  0cc0 11028  1c1 11029  cmin 11365  0cn0 12402  seqcseq 13926   sadd csad 16349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147  df-n0 12403  df-seq 13927  df-sad 16380
This theorem is referenced by:  sadval  16385  sadadd2lem  16388  sadadd3  16390  sadcl  16391  sadcom  16392
  Copyright terms: Public domain W3C validator