|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sadval | Structured version Visualization version GIF version | ||
| Description: The full adder sequence is the half adder function applied to the inputs and the carry sequence. (Contributed by Mario Carneiro, 5-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| sadval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) | 
| sadval.b | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) | 
| sadval.c | ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | 
| sadcp1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) | 
| Ref | Expression | 
|---|---|
| sadval | ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sadval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ0) | |
| 2 | sadval.b | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℕ0) | |
| 3 | sadval.c | . . . 4 ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
| 4 | 1, 2, 3 | sadfval 16489 | . . 3 ⊢ (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))}) | 
| 5 | 4 | eleq2d 2827 | . 2 ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))})) | 
| 6 | sadcp1.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 7 | eleq1 2829 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
| 8 | eleq1 2829 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ 𝐵 ↔ 𝑁 ∈ 𝐵)) | |
| 9 | fveq2 6906 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝐶‘𝑘) = (𝐶‘𝑁)) | |
| 10 | 9 | eleq2d 2827 | . . . . 5 ⊢ (𝑘 = 𝑁 → (∅ ∈ (𝐶‘𝑘) ↔ ∅ ∈ (𝐶‘𝑁))) | 
| 11 | 7, 8, 10 | hadbi123d 1595 | . . . 4 ⊢ (𝑘 = 𝑁 → (hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘)) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) | 
| 12 | 11 | elrab3 3693 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))} ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) | 
| 13 | 6, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))} ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) | 
| 14 | 5, 13 | bitrd 279 | 1 ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 haddwhad 1593 caddwcad 1606 ∈ wcel 2108 {crab 3436 ⊆ wss 3951 ∅c0 4333 ifcif 4525 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 1oc1o 8499 2oc2o 8500 0cc0 11155 1c1 11156 − cmin 11492 ℕ0cn0 12526 seqcseq 14042 sadd csad 16457 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-1cn 11213 ax-addcl 11215 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-xor 1512 df-tru 1543 df-fal 1553 df-had 1594 df-cad 1607 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-nn 12267 df-n0 12527 df-seq 14043 df-sad 16488 | 
| This theorem is referenced by: sadadd2lem 16496 saddisjlem 16501 | 
| Copyright terms: Public domain | W3C validator |