MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadval Structured version   Visualization version   GIF version

Theorem sadval 16502
Description: The full adder sequence is the half adder function applied to the inputs and the carry sequence. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadval (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 sadval.a . . . 4 (𝜑𝐴 ⊆ ℕ0)
2 sadval.b . . . 4 (𝜑𝐵 ⊆ ℕ0)
3 sadval.c . . . 4 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
41, 2, 3sadfval 16498 . . 3 (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))})
54eleq2d 2830 . 2 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))}))
6 sadcp1.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 eleq1 2832 . . . . 5 (𝑘 = 𝑁 → (𝑘𝐴𝑁𝐴))
8 eleq1 2832 . . . . 5 (𝑘 = 𝑁 → (𝑘𝐵𝑁𝐵))
9 fveq2 6920 . . . . . 6 (𝑘 = 𝑁 → (𝐶𝑘) = (𝐶𝑁))
109eleq2d 2830 . . . . 5 (𝑘 = 𝑁 → (∅ ∈ (𝐶𝑘) ↔ ∅ ∈ (𝐶𝑁)))
117, 8, 10hadbi123d 1592 . . . 4 (𝑘 = 𝑁 → (hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘)) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
1211elrab3 3709 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))} ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
136, 12syl 17 . 2 (𝜑 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))} ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
145, 13bitrd 279 1 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  haddwhad 1590  caddwcad 1603  wcel 2108  {crab 3443  wss 3976  c0 4352  ifcif 4548  cmpt 5249  cfv 6573  (class class class)co 7448  cmpo 7450  1oc1o 8515  2oc2o 8516  0cc0 11184  1c1 11185  cmin 11520  0cn0 12553  seqcseq 14052   sadd csad 16466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-had 1591  df-cad 1604  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294  df-n0 12554  df-seq 14053  df-sad 16497
This theorem is referenced by:  sadadd2lem  16505  saddisjlem  16510
  Copyright terms: Public domain W3C validator