![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sadval | Structured version Visualization version GIF version |
Description: The full adder sequence is the half adder function applied to the inputs and the carry sequence. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
sadval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
sadval.b | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
sadval.c | ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
sadcp1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
sadval | ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sadval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ0) | |
2 | sadval.b | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℕ0) | |
3 | sadval.c | . . . 4 ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
4 | 1, 2, 3 | sadfval 16486 | . . 3 ⊢ (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))}) |
5 | 4 | eleq2d 2825 | . 2 ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))})) |
6 | sadcp1.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
7 | eleq1 2827 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
8 | eleq1 2827 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ 𝐵 ↔ 𝑁 ∈ 𝐵)) | |
9 | fveq2 6907 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝐶‘𝑘) = (𝐶‘𝑁)) | |
10 | 9 | eleq2d 2825 | . . . . 5 ⊢ (𝑘 = 𝑁 → (∅ ∈ (𝐶‘𝑘) ↔ ∅ ∈ (𝐶‘𝑁))) |
11 | 7, 8, 10 | hadbi123d 1592 | . . . 4 ⊢ (𝑘 = 𝑁 → (hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘)) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
12 | 11 | elrab3 3696 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))} ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
13 | 6, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))} ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
14 | 5, 13 | bitrd 279 | 1 ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 haddwhad 1590 caddwcad 1603 ∈ wcel 2106 {crab 3433 ⊆ wss 3963 ∅c0 4339 ifcif 4531 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 1oc1o 8498 2oc2o 8499 0cc0 11153 1c1 11154 − cmin 11490 ℕ0cn0 12524 seqcseq 14039 sadd csad 16454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1540 df-fal 1550 df-had 1591 df-cad 1604 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-n0 12525 df-seq 14040 df-sad 16485 |
This theorem is referenced by: sadadd2lem 16493 saddisjlem 16498 |
Copyright terms: Public domain | W3C validator |