![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sadval | Structured version Visualization version GIF version |
Description: The full adder sequence is the half adder function applied to the inputs and the carry sequence. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
sadval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
sadval.b | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
sadval.c | ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
sadcp1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
sadval | ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sadval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ0) | |
2 | sadval.b | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℕ0) | |
3 | sadval.c | . . . 4 ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
4 | 1, 2, 3 | sadfval 16337 | . . 3 ⊢ (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))}) |
5 | 4 | eleq2d 2820 | . 2 ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))})) |
6 | sadcp1.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
7 | eleq1 2822 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
8 | eleq1 2822 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ 𝐵 ↔ 𝑁 ∈ 𝐵)) | |
9 | fveq2 6843 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝐶‘𝑘) = (𝐶‘𝑁)) | |
10 | 9 | eleq2d 2820 | . . . . 5 ⊢ (𝑘 = 𝑁 → (∅ ∈ (𝐶‘𝑘) ↔ ∅ ∈ (𝐶‘𝑁))) |
11 | 7, 8, 10 | hadbi123d 1597 | . . . 4 ⊢ (𝑘 = 𝑁 → (hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘)) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
12 | 11 | elrab3 3647 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))} ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
13 | 6, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))} ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
14 | 5, 13 | bitrd 279 | 1 ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 haddwhad 1595 caddwcad 1608 ∈ wcel 2107 {crab 3406 ⊆ wss 3911 ∅c0 4283 ifcif 4487 ↦ cmpt 5189 ‘cfv 6497 (class class class)co 7358 ∈ cmpo 7360 1oc1o 8406 2oc2o 8407 0cc0 11056 1c1 11057 − cmin 11390 ℕ0cn0 12418 seqcseq 13912 sadd csad 16305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-1cn 11114 ax-addcl 11116 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-xor 1511 df-tru 1545 df-fal 1555 df-had 1596 df-cad 1609 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-nn 12159 df-n0 12419 df-seq 13913 df-sad 16336 |
This theorem is referenced by: sadadd2lem 16344 saddisjlem 16349 |
Copyright terms: Public domain | W3C validator |