MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hadcomaOLD Structured version   Visualization version   GIF version

Theorem hadcomaOLD 1602
Description: Obsolete version of hadcoma 1601 as of 17-Dec-2023. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hadcomaOLD (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜑, 𝜒))

Proof of Theorem hadcomaOLD
StepHypRef Expression
1 xorcom 1506 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
2 biid 260 . . 3 (𝜒𝜒)
31, 2xorbi12i 1517 . 2 (((𝜑𝜓) ⊻ 𝜒) ↔ ((𝜓𝜑) ⊻ 𝜒))
4 df-had 1596 . 2 (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ⊻ 𝜒))
5 df-had 1596 . 2 (hadd(𝜓, 𝜑, 𝜒) ↔ ((𝜓𝜑) ⊻ 𝜒))
63, 4, 53bitr4i 302 1 (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜑, 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wxo 1503  haddwhad 1595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-xor 1504  df-had 1596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator