Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hadcoma | Structured version Visualization version GIF version |
Description: Commutative law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 17-Dec-2023.) |
Ref | Expression |
---|---|
hadcoma | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜑, 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 221 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) | |
2 | 1 | bibi1i 339 | . 2 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ ((𝜓 ↔ 𝜑) ↔ 𝜒)) |
3 | hadbi 1599 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒)) | |
4 | hadbi 1599 | . 2 ⊢ (hadd(𝜓, 𝜑, 𝜒) ↔ ((𝜓 ↔ 𝜑) ↔ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜑, 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 haddwhad 1594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-xor 1507 df-had 1595 |
This theorem is referenced by: hadrot 1603 sadcom 16170 |
Copyright terms: Public domain | W3C validator |