Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjlem17 Structured version   Visualization version   GIF version

Theorem disjlem17 38798
Description: Lemma for disjdmqseq 38804, partim2 38806 and petlem 38811 via disjlem18 38799, (general version of the former prtlem17 38876). (Contributed by Peter Mazsa, 10-Sep-2021.)
Assertion
Ref Expression
disjlem17 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem disjlem17
StepHypRef Expression
1 df-rex 3055 . . 3 (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) ↔ ∃𝑦(𝑦 ∈ dom 𝑅 ∧ (𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅)))
2 an32 646 . . . . . . . 8 (((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) ∧ 𝐴 ∈ [𝑥]𝑅) ↔ ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) ∧ 𝑦 ∈ dom 𝑅))
3 disjlem14 38797 . . . . . . . . . . 11 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)))
4 eleq2 2818 . . . . . . . . . . . 12 ([𝑥]𝑅 = [𝑦]𝑅 → (𝐵 ∈ [𝑥]𝑅𝐵 ∈ [𝑦]𝑅))
54biimprd 248 . . . . . . . . . . 11 ([𝑥]𝑅 = [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅))
63, 5syl8 76 . . . . . . . . . 10 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅))))
76exp4a 431 . . . . . . . . 9 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝐴 ∈ [𝑥]𝑅 → (𝐴 ∈ [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅)))))
87impd 410 . . . . . . . 8 ( Disj 𝑅 → (((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) ∧ 𝐴 ∈ [𝑥]𝑅) → (𝐴 ∈ [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅))))
92, 8biimtrrid 243 . . . . . . 7 ( Disj 𝑅 → (((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝐴 ∈ [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅))))
109expd 415 . . . . . 6 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝑦 ∈ dom 𝑅 → (𝐴 ∈ [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅)))))
1110imp5a 440 . . . . 5 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝑦 ∈ dom 𝑅 → ((𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅))))
1211imp4b 421 . . . 4 (( Disj 𝑅 ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → ((𝑦 ∈ dom 𝑅 ∧ (𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅)) → 𝐵 ∈ [𝑥]𝑅))
1312exlimdv 1933 . . 3 (( Disj 𝑅 ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (∃𝑦(𝑦 ∈ dom 𝑅 ∧ (𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅)) → 𝐵 ∈ [𝑥]𝑅))
141, 13biimtrid 242 . 2 (( Disj 𝑅 ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅))
1514ex 412 1 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054  dom cdm 5641  [cec 8672   Disj wdisjALTV 38210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rmo 3356  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-coss 38409  df-cnvrefrel 38525  df-disjALTV 38704
This theorem is referenced by:  disjlem18  38799
  Copyright terms: Public domain W3C validator