Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjlem17 Structured version   Visualization version   GIF version

Theorem disjlem17 38755
Description: Lemma for disjdmqseq 38761, partim2 38763 and petlem 38768 via disjlem18 38756, (general version of the former prtlem17 38832). (Contributed by Peter Mazsa, 10-Sep-2021.)
Assertion
Ref Expression
disjlem17 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem disjlem17
StepHypRef Expression
1 df-rex 3077 . . 3 (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) ↔ ∃𝑦(𝑦 ∈ dom 𝑅 ∧ (𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅)))
2 an32 645 . . . . . . . 8 (((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) ∧ 𝐴 ∈ [𝑥]𝑅) ↔ ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) ∧ 𝑦 ∈ dom 𝑅))
3 disjlem14 38754 . . . . . . . . . . 11 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)))
4 eleq2 2833 . . . . . . . . . . . 12 ([𝑥]𝑅 = [𝑦]𝑅 → (𝐵 ∈ [𝑥]𝑅𝐵 ∈ [𝑦]𝑅))
54biimprd 248 . . . . . . . . . . 11 ([𝑥]𝑅 = [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅))
63, 5syl8 76 . . . . . . . . . 10 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅))))
76exp4a 431 . . . . . . . . 9 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝐴 ∈ [𝑥]𝑅 → (𝐴 ∈ [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅)))))
87impd 410 . . . . . . . 8 ( Disj 𝑅 → (((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) ∧ 𝐴 ∈ [𝑥]𝑅) → (𝐴 ∈ [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅))))
92, 8biimtrrid 243 . . . . . . 7 ( Disj 𝑅 → (((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝐴 ∈ [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅))))
109expd 415 . . . . . 6 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝑦 ∈ dom 𝑅 → (𝐴 ∈ [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅)))))
1110imp5a 440 . . . . 5 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝑦 ∈ dom 𝑅 → ((𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅))))
1211imp4b 421 . . . 4 (( Disj 𝑅 ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → ((𝑦 ∈ dom 𝑅 ∧ (𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅)) → 𝐵 ∈ [𝑥]𝑅))
1312exlimdv 1932 . . 3 (( Disj 𝑅 ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (∃𝑦(𝑦 ∈ dom 𝑅 ∧ (𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅)) → 𝐵 ∈ [𝑥]𝑅))
141, 13biimtrid 242 . 2 (( Disj 𝑅 ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅))
1514ex 412 1 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076  dom cdm 5700  [cec 8761   Disj wdisjALTV 38169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-coss 38367  df-cnvrefrel 38483  df-disjALTV 38661
This theorem is referenced by:  disjlem18  38756
  Copyright terms: Public domain W3C validator