Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjlem17 Structured version   Visualization version   GIF version

Theorem disjlem17 38136
Description: Lemma for disjdmqseq 38142, partim2 38144 and petlem 38149 via disjlem18 38137, (general version of the former prtlem17 38213). (Contributed by Peter Mazsa, 10-Sep-2021.)
Assertion
Ref Expression
disjlem17 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem disjlem17
StepHypRef Expression
1 df-rex 3070 . . 3 (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) ↔ ∃𝑦(𝑦 ∈ dom 𝑅 ∧ (𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅)))
2 an32 643 . . . . . . . 8 (((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) ∧ 𝐴 ∈ [𝑥]𝑅) ↔ ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) ∧ 𝑦 ∈ dom 𝑅))
3 disjlem14 38135 . . . . . . . . . . 11 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅)))
4 eleq2 2821 . . . . . . . . . . . 12 ([𝑥]𝑅 = [𝑦]𝑅 → (𝐵 ∈ [𝑥]𝑅𝐵 ∈ [𝑦]𝑅))
54biimprd 247 . . . . . . . . . . 11 ([𝑥]𝑅 = [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅))
63, 5syl8 76 . . . . . . . . . 10 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅𝐴 ∈ [𝑦]𝑅) → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅))))
76exp4a 431 . . . . . . . . 9 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝐴 ∈ [𝑥]𝑅 → (𝐴 ∈ [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅)))))
87impd 410 . . . . . . . 8 ( Disj 𝑅 → (((𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) ∧ 𝐴 ∈ [𝑥]𝑅) → (𝐴 ∈ [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅))))
92, 8biimtrrid 242 . . . . . . 7 ( Disj 𝑅 → (((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) ∧ 𝑦 ∈ dom 𝑅) → (𝐴 ∈ [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅))))
109expd 415 . . . . . 6 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝑦 ∈ dom 𝑅 → (𝐴 ∈ [𝑦]𝑅 → (𝐵 ∈ [𝑦]𝑅𝐵 ∈ [𝑥]𝑅)))))
1110imp5a 440 . . . . 5 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝑦 ∈ dom 𝑅 → ((𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅))))
1211imp4b 421 . . . 4 (( Disj 𝑅 ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → ((𝑦 ∈ dom 𝑅 ∧ (𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅)) → 𝐵 ∈ [𝑥]𝑅))
1312exlimdv 1935 . . 3 (( Disj 𝑅 ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (∃𝑦(𝑦 ∈ dom 𝑅 ∧ (𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅)) → 𝐵 ∈ [𝑥]𝑅))
141, 13biimtrid 241 . 2 (( Disj 𝑅 ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅))
1514ex 412 1 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1780  wcel 2105  wrex 3069  dom cdm 5676  [cec 8707   Disj wdisjALTV 37544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rmo 3375  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ec 8711  df-coss 37748  df-cnvrefrel 37864  df-disjALTV 38042
This theorem is referenced by:  disjlem18  38137
  Copyright terms: Public domain W3C validator