Proof of Theorem prtlem17
Step | Hyp | Ref
| Expression |
1 | | df-rex 3076 |
. . 3
⊢
(∃𝑦 ∈
𝐴 (𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦))) |
2 | | an32 645 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝑥) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) ∧ 𝑦 ∈ 𝐴)) |
3 | | prtlem14 36485 |
. . . . . . . . . . 11
⊢ (Prt
𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑧 ∈ 𝑥 ∧ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦))) |
4 | | elequ2 2126 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)) |
5 | 4 | biimprd 251 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑥)) |
6 | 3, 5 | syl8 76 |
. . . . . . . . . 10
⊢ (Prt
𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑧 ∈ 𝑥 ∧ 𝑧 ∈ 𝑦) → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑥)))) |
7 | 6 | exp4a 435 |
. . . . . . . . 9
⊢ (Prt
𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ 𝑥 → (𝑧 ∈ 𝑦 → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑥))))) |
8 | 7 | impd 414 |
. . . . . . . 8
⊢ (Prt
𝐴 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝑥) → (𝑧 ∈ 𝑦 → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑥)))) |
9 | 2, 8 | syl5bir 246 |
. . . . . . 7
⊢ (Prt
𝐴 → (((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ 𝑦 → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑥)))) |
10 | 9 | expd 419 |
. . . . . 6
⊢ (Prt
𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → (𝑦 ∈ 𝐴 → (𝑧 ∈ 𝑦 → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑥))))) |
11 | 10 | imp5a 444 |
. . . . 5
⊢ (Prt
𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → (𝑦 ∈ 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦) → 𝑤 ∈ 𝑥)))) |
12 | 11 | imp4b 425 |
. . . 4
⊢ ((Prt
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥)) → ((𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦)) → 𝑤 ∈ 𝑥)) |
13 | 12 | exlimdv 1934 |
. . 3
⊢ ((Prt
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥)) → (∃𝑦(𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦)) → 𝑤 ∈ 𝑥)) |
14 | 1, 13 | syl5bi 245 |
. 2
⊢ ((Prt
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥)) → (∃𝑦 ∈ 𝐴 (𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦) → 𝑤 ∈ 𝑥)) |
15 | 14 | ex 416 |
1
⊢ (Prt
𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → (∃𝑦 ∈ 𝐴 (𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦) → 𝑤 ∈ 𝑥))) |